The history of special relativity consists of many theoretical results
and empirical findings obtained by Albert A. Michelson, Hendrik
Lorentz,
Contents 1 Introduction 2 Aether and electrodynamics of moving bodies 2.1 Aether models and Maxwell's equations 2.2 Search for the aether 2.3 Lorentz's theory of electrons 2.4 Electromagnetic mass 2.5 Absolute space and time 2.6 Light constancy and the principle of relative motion 2.7 Lorentz's 1904 model 2.8 Poincaré's dynamics of the electron 3
3.1 Einstein 1905 3.1.1
3.2 Early reception 3.2.1 First assessments 3.2.2 Kaufmann-Bucherer experiments 3.2.3 Relativistic momentum and mass 3.2.4 Mass and energy 3.2.5 Experiments by Fizeau and Sagnac 3.2.6 Relativity of simultaneity 3.3
3.3.1 Minkowski's spacetime
3.3.2 Vector notation and closed systems
3.3.3
3.4 Relativistic theories 3.4.1 Gravitation 3.4.2 Quantum field theory 3.5 Experimental evidence 3.6 Priority 3.7 Criticisms 4 See also 5 References 5.1 Primary sources 5.2 Notes and secondary sources 6 External links Introduction[edit]
Although
A. A. Michelson
1 / 1 − v 2 / c 2 displaystyle scriptstyle 1/ sqrt 1- v^ 2 / c^ 2 for the y- and z-coordinates, and a new time variable t ′ = t − v x / c 2 displaystyle scriptstyle t'=t-vx/c^ 2 which later was called "local time". However, Voigt's work was completely ignored by his contemporaries.[13][14] FitzGerald (1889) offered another explanation of the negative result of the Michelson–Morley experiment. Contrary to Voigt, he speculated that the intermolecular forces are possibly of electrical origin so that material bodies would contract in the line of motion (length contraction). This was in connection with the work of Heaviside (1887), who determined that the electrostatic fields in motion were deformed (Heaviside Ellipsoid), which leads to physically undetermined conditions at the speed of light.[15] However, FitzGerald's idea remained widely unknown and was not discussed before Oliver Lodge published a summary of the idea in 1892.[16] Also Lorentz (1892b) proposed length contraction independently from FitzGerald in order to explain the Michelson–Morley experiment. For plausibility reasons, Lorentz referred to the analogy of the contraction of electrostatic fields. However, even Lorentz admitted that that was not a necessary reason and length-contraction consequently remained an ad hoc hypothesis.[17][18] Lorentz's theory of electrons[edit] Hendrik Antoon Lorentz Lorentz (1892a) set the foundations of Lorentz aether theory, by assuming the existence of electrons which he separated from the aether, and by replacing the "Maxwell-Hertz" Equations by the "Maxwell-Lorentz" Equations. In his model, the aether is completely motionless and, contrary to Fresnel's theory, also is not partially dragged by matter. An important consequence of this notion was that the velocity of light is totally independent of the velocity of the source. Lorentz gave no statements about the mechanical nature of the aether and the electromagnetic processes, but, vice versa, tried to explain the mechanical processes by electromagnetic ones and therefore created an abstract electromagnetic æther. In the framework of his theory, Lorentz calculated, like Heaviside, the contraction of the electrostatic fields.[19] Lorentz (1895) also introduced what he called the "Theorem of Corresponding States" for terms of first order in v / c displaystyle scriptstyle v/c . This theorem states that a moving observer (relative to the aether) in his "fictitious" field makes the same observations as a resting observer in his "real" field. An important part of it was local time t ′ = t − v x / c 2 displaystyle scriptstyle t'=t-vx/c^ 2 , which paved the way to the
v / c displaystyle scriptstyle v/c . Lorentz later noted that these transformations did in fact preserve
the form of
v / c displaystyle scriptstyle v/c . Larmor noticed on that occasion that length-contraction was
derivable from the model; furthermore, he calculated some manner of
time dilation for electron orbits. Larmor specified his considerations
in 1900 and 1904.[14][24] Independently of Larmor, also Lorentz (1899)
extended his transformation for second order terms and noted a
(mathematical) Time Dilation effect as well.
Other physicists besides Lorentz and Larmor also tried to develop a
consistent model of electrodynamics. For example,
m = ( 4 / 3 ) E / c 2 displaystyle scriptstyle m=(4/3)E/c^ 2 , where m displaystyle scriptstyle m is the electromagnetic mass and E displaystyle scriptstyle E is the electromagnetic energy. Heaviside and Searle also recognized
that the increase of the mass of a body is not constant and varies
with its velocity. Consequently, Searle noted the impossibility of
superluminal velocities, because infinite energy would be needed to
exceed the speed of light. Also for Lorentz (1899), the integration of
the speed-dependence of masses recognized by Thomson was especially
important. He noticed that the mass not only varied due to speed, but
is also dependent on the direction, and he introduced what Abraham
later called "longitudinal" and "transverse" mass. (The transverse
mass corresponds to what later was called relativistic mass.[28])
m = E / c 2 displaystyle scriptstyle m=E/c^ 2 (or E = m c 2 displaystyle scriptstyle E=mc^ 2 ) and defined a fictitious electromagnetic momentum as well. However, he arrived at a radiation paradox which was fully explained by Einstein in 1905.[30] Walter Kaufmann (1901–1903) was the first to confirm the velocity dependence of electromagnetic mass by analyzing the ratio e / m displaystyle scriptstyle e/m (where e displaystyle scriptstyle e is the charge and m displaystyle scriptstyle m the mass) of cathode rays. He found that the value of e / m displaystyle scriptstyle e/m decreased with the speed, showing that, assuming the charge constant,
the mass of the electron increased with the speed. He also believed
that those experiments confirmed the assumption of Wien, that there is
no "real" mechanical mass, but only the "apparent" electromagnetic
mass, or in other words, the mass of all bodies is of electromagnetic
origin.[31]
E / c 2 displaystyle scriptstyle E/c^ 2 . But unlike the fictitious quantities introduced by Poincaré, he considered it as a real physical entity. Abraham also noted (like Lorentz in 1899) that this mass also depends on the direction and coined the names "Longitudinal" and "Transverse" Mass. In contrast to Lorentz, he didn't incorporate the Contraction Hypothesis into his theory, and therefore his mass terms differed from those of Lorentz.[32] Based on the preceding work on electromagnetic mass, Friedrich Hasenöhrl suggested that part of the mass of a body (which he called apparent mass) can be thought of as radiation bouncing around a cavity. The "apparent mass" of radiation depends on the temperature (because every heated body emits radiation) and is proportional to its energy. Hasenöhrl stated that this energy-apparent-mass relation only holds as long as the body radiates, i.e., if the temperature of a body is greater than 0 K. At first he gave the expression m = ( 8 / 3 ) E / c 2 displaystyle scriptstyle m=(8/3)E/c^ 2 for the apparent mass; however, Abraham and Hasenöhrl himself in 1905 changed the result to m = ( 4 / 3 ) E / c 2 displaystyle scriptstyle m=(4/3)E/c^ 2 , the same value as for the electromagnetic mass for a body at
rest.[33]
Absolute space and time[edit]
Some scientists and philosophers of science were critical of Newton's
definitions of absolute space and time.[34][35][36]
i t displaystyle scriptstyle it (where i = − 1 displaystyle scriptstyle i= sqrt -1 , i.e. imaginary number). However, Palagyi's time coordinate is not connected to the speed of light. He also rejected any connection with the existing constructions of n-dimensional spaces and non-Euclidean geometry, so his philosophical model bears only little resemblance with spacetime physics, as it was later developed by Minkowski.[40] Light constancy and the principle of relative motion[edit] Henri Poincaré In the second half of the 19th century there were many attempts to
develop a worldwide clock network synchronized by electrical signals.
For that endeavor, the finite propagation speed of light had to be
considered, because synchronization signals could travel no faster
than the speed of light. So
t ′ = t − v x / c 2 displaystyle scriptstyle t'=t- vx / c^ 2 . But because the moving observers do not know anything about their
movement, they do not recognize this. So, contrary to Lorentz,
Poincaré-defined local time can be measured and indicated by
clocks.[43] Therefore, in his recommendation of Lorentz for the Nobel
Prize in 1902, Poincaré argued that Lorentz has convincingly
explained the negative outcome of the aether drift experiments by
inventing the "diminished" or "local" time, i.e. a time coordinate in
which two events at different places could appear as simultaneous,
although they are not simultaneous in reality.[44]
Like Poincaré,
1 − v 2 / c 2 displaystyle scriptstyle sqrt 1- v^ 2 / c^ 2 becomes imaginary.[47]
Lorentz's theory was criticized by Abraham, who demonstrated that on
one side the theory obeys the relativity principle, and on the other
side the electromagnetic origin of all forces is assumed. Abraham
showed, that both assumptions were incompatible, because in Lorentz's
theory of the contracted electrons, non-electric forces were needed in
order to guarantee the stability of matter. However, in Abraham's
theory of the rigid electron, no such forces were needed. Thus the
question arose whether the Electromagnetic conception of the world
(compatible with Abraham's theory) or the Relativity Principle
(compatible with Lorentz's Theory) was correct.[48]
In a September 1904 lecture in
x 2 + y 2 + z 2 − c 2 t 2 displaystyle scriptstyle x^ 2 +y^ 2 +z^ 2 -c^ 2 t^ 2 is invariant. While elaborating his gravitational theory, he said the
c t − 1 displaystyle scriptstyle ct sqrt -1 as a fourth imaginary coordinate (contrary to Palagyi, he included
the speed of light), and he already used four-vectors. He wrote that
the discovery of magneto-cathode rays by
Albert Einstein, 1921 On September 26, 1905 (received June 30),
a) Maxwell's electrodynamics, as presented by Lorentz in 1895, was the most successful theory at this time. Here, the speed of light is constant in all directions in the stationary aether and completely independent of the velocity of the source; b) The inability to find an absolute state of motion, i.e. the validity of the relativity principle as the consequence of the negative results of all aether drift experiments and effects like the moving magnet and conductor problem which only depend on relative motion; c) The Fizeau experiment; d) The aberration of light; with the following consequences for the speed of light and the theories known at that time: The speed of light is not composed of the speed of light in vacuum and the velocity of a preferred frame of reference, by b. This contradicts the theory of the (nearly) stationary aether. The speed of light is not composed of the speed of light in vacuum and the velocity of the light source, by a and c. This contradicts the emission theory. The speed of light is not composed of the speed of light in vacuum and the velocity of an aether that would be dragged within or in the vicinity of matter, by a, c, and d. This contradicts the hypothesis of the complete aether drag. The speed of light in moving media is not composed of the speed of light when the medium is at rest and the velocity of the medium, but is determined by Fresnel's dragging coefficient, by c.[W 1] In order to make the principle of relativity as required by Poincaré
an exact law of nature in the immobile aether theory of Lorentz, the
introduction of a variety ad hoc hypotheses was required, such as the
contraction hypothesis, local time, the Poincaré stresses, etc.. This
method was criticized by many scholars, since the assumption of a
conspiracy of effects which completely prevent the discovery of the
aether drift is considered to be very improbable, and it would violate
“
There is no doubt, that the special theory of relativity, if we regard
its development in retrospect, was ripe for discovery in 1905. Lorentz
had already recognized that the transformations named after him are
essential for the analysis of Maxwell's equations, and Poincaré
deepened this insight still further. Concerning myself, I knew only
Lorentz's important work of 1895 [...] but not Lorentz's later work,
nor the consecutive investigations by Poincaré. In this sense my work
of 1905 was independent. [..] The new feature of it was the
realization of the fact that the bearing of the Lorentz transformation
transcended its connection with
Mass-energy equivalence[edit]
Main article:
E k i n = m c 2 ( 1 1 − v 2 c 2 − 1 ) displaystyle E_ kin =mc^ 2 left( frac 1 sqrt 1- frac v^ 2 c^ 2 -1right) for the kinetic energy of an electron. In elaboration of this he
published a paper (received September 27, November 1905), in which
Einstein showed that when a material body lost energy (either
radiation or heat) of amount E, its mass decreased by the amount E
/c2. This led to the famous mass–energy equivalence formula:
E = mc2. Einstein considered the equivalency equation to be
of paramount importance because it showed that a massive particle
possesses an energy, the "rest energy", distinct from its classical
kinetic and potential energies.[30] As it was shown above, many
authors before Einstein arrived at similar formulas (including a
4/3-factor) for the relation of mass to energy. However, their work
was focused on electromagnetic energy which (as we know today) only
represents a small part of the entire energy within matter. So it was
Einstein who was the first to: (a) ascribe this relation to all forms
of energy, and (b) understand the connection of Mass-energy
equivalence with the relativity principle.
Early reception[edit]
First assessments[edit]
Walter Kaufmann (1905, 1906) was probably the first who referred to
Einstein's work. He compared the theories of Lorentz and Einstein and,
although he said Einstein's method is to be preferred, he argued that
both theories are observationally equivalent. Therefore, he spoke of
the relativity principle as the "Lorentz-Einsteinian" basic
assumption.[74] Shortly afterwards,
Max Planck Planck (1906a) defined the relativistic momentum and gave the correct
values for the longitudinal and transverse mass by correcting a slight
mistake of the expression given by Einstein in 1905. Planck's
expressions were in principle equivalent to those used by Lorentz in
1899.[77] Based on the work of Planck, the concept of relativistic
mass was developed by
E = m c 2 displaystyle E=mc^ 2 , but Planck judged his own approach as more general than
Einstein's.[79]
Experiments by Fizeau and Sagnac[edit]
As was explained above, already in 1895 Lorentz succeeded in deriving
Fresnel's dragging coefficient (to first order of v/c) and the Fizeau
experiment by using the electromagnetic theory and the concept of
local time. After first attempts by
Hermann Minkowski Poincaré's attempt of a four-dimensional reformulation of the new
mechanics was not continued by himself,[52] so it was Hermann
Minkowski (1907), who worked out the consequences of that notion
(other contributions were made by
Max von Laue A similar situation was created by
Physics portal History of Lorentz transformations Tests of special relativity References[edit] Primary sources[edit] Abraham, Max (1902), "Dynamik des Electrons", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 20–41 Abraham, Max (1903), "Prinzipien der Dynamik des Elektrons", Annalen der Physik, 315 (1): 105–179, Bibcode:1902AnP...315..105A, doi:10.1002/andp.19023150105 Abraham, Max (1904), "Die Grundhypothesen der Elektronentheorie" [The Fundamental Hypotheses of the Theory of Electrons], Physikalische Zeitschrift, 5: 576–579 Abraham, Max (1914), "Neuere Gravitationstheorien", Jahrbuch für Radioaktivität und Elektronik, 11 (4): 470–520. Alväger, Farley, Kjellmann, Walle (1964), "Test of the second postulate of special relativity in the GeV region", Physical Review Letters, 12 (3): 260–262, Bibcode:1964PhL....12..260A, doi:10.1016/0031-9163(64)91095-9 CS1 maint: Multiple names: authors list (link) Bartoli, Adolfo (1884) [1876], "Il calorico raggiante e il secondo principio di termodynamica" (PDF), Nuovo Cimento, 15: 196–202, Bibcode:1884NCim...15..193B, doi:10.1007/bf02737234, archived from the original (PDF) on December 17, 2008 Bateman, Harry (1910) [1909], "The Transformation of the Electrodynamical Equations", Proceedings of the London Mathematical Society, 8 (1): 223–264, doi:10.1112/plms/s2-8.1.223. Borel, Émile (1913), "La théorie de la relativité et la cinématique", Comptes Rendus des Séances de l'Académie des Sciences, 156: 215–218 Borel, Émile (1913), "La cinématique dans la théorie de la relativité", Comptes Rendus des Séances de l'Académie des Sciences, 157: 703–705 Born, Max (1909), "Die Theorie des starren Körpers in der Kinematik
des Relativitätsprinzips" [The Theory of the Rigid
Brecher, Kenneth (1977), "Is the Speed of Light Independent of the Velocity of the Source?", Physical Review Letters, 39 (17): 1051–1054, Bibcode:1977PhRvL..39.1051B, doi:10.1103/PhysRevLett.39.1051 Bucherer, A. H. (1903), "Über den Einfluß der Erdbewegung auf die Intensität des Lichtes", Annalen der Physik, 316 (6): 270–283, Bibcode:1903AnP...316..270B, doi:10.1002/andp.19033160604 Bucherer, A. H. (1908), "Messungen an Becquerelstrahlen. Die experimentelle Bestätigung der Lorentz-Einsteinschen Theorie.", Physikalische Zeitschrift, 9 (22): 755–762 Cohn, Emil (1901), "Über die Gleichungen der Electrodynamik für bewegte Körper", Archives néerlandaises des sciences exactes et naturelles, 5: 516–523 Cohn, Emil (1904), "Zur Elektrodynamik bewegter Systeme I" [On the
Cohn, Emil (1904), "Zur Elektrodynamik bewegter Systeme II" [On the
Comstock, Daniel Frost (1910), "The Principle of Relativity", Science, 31 (803): 767–772, Bibcode:1910Sci....31..767C, doi:10.1126/science.31.803.767, PMID 17758464 Cunningham, Ebenezer (1910) [1909], "The principle of Relativity in
De Sitter, Willem (1913), "A proof of the constancy of the velocity of light", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 15 (2): 1297–1298 De Sitter, Willem (1913), "On the constancy of the velocity of light", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 16 (1): 395–396 Ehrenfest, Paul (1909), "Gleichförmige Rotation starrer Körper und Relativitätstheorie" [Uniform Rotation of Rigid Bodies and the Theory of Relativity], Physikalische Zeitschrift, 10: 918 Einstein, Albert (1905a), "Zur Elektrodynamik bewegter Körper" (PDF), Annalen der Physik, 322 (10): 891–921, Bibcode:1905AnP...322..891E, doi:10.1002/andp.19053221004 . See also: English translation. Einstein, Albert (1905b), "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?" (PDF), Annalen der Physik, 323 (13): 639–641, Bibcode:1905AnP...323..639E, doi:10.1002/andp.19053231314 . See also the English translation. Einstein, Albert (1906), "Das Prinzip von der Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie" (PDF), Annalen der Physik, 325 (8): 627–633, Bibcode:1906AnP...325..627E, doi:10.1002/andp.19063250814 Einstein, Albert (1907), "Über die vom Relativitätsprinzip geforderte Trägheit der Energie" (PDF), Annalen der Physik, 328 (7): 371–384, Bibcode:1907AnP...328..371E, doi:10.1002/andp.19073280713 Einstein, Albert (1908) [1907], "Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen" (PDF), Jahrbuch der Radioaktivität und Elektronik, 4: 411–462, Bibcode:1908JRE.....4..411E Einstein, Albert; Laub, Jakob (1908b), "Über die elektromagnetischen Grundgleichungen für bewegte Körper" (PDF), Annalen der Physik, 331 (8): 532–540, Bibcode:1908AnP...331..532E, doi:10.1002/andp.19083310806 Einstein, Albert (1909), "The Development of Our Views on the Composition and Essence of Radiation", Physikalische Zeitschrift, 10 (22): 817–825 Einstein, Albert (1912), "Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham" (PDF), Annalen der Physik, 38 (10): 1059–1064, Bibcode:1912AnP...343.1059E, doi:10.1002/andp.19123431014 Einstein A. (1916), Relativity: The
Einstein, Albert (1922), Ether and the Theory of Relativity, Methuen & Co. FitzGerald, George Francis (1889), "The Ether and the Earth's Atmosphere", Science, 13 (328): 390, Bibcode:1889Sci....13..390F, doi:10.1126/science.ns-13.328.390, PMID 17819387 Fizeau, H. (1851). "The Hypotheses Relating to the Luminous Aether,
and an Experiment which Appears to Demonstrate that the Motion of
Bodies Alters the Velocity with which Light Propagates itself in their
Interior". Philosophical Magazine. 2: 568–573.
Fox, J.G. (1962), "Experimental Evidence for the Second
Filippas, T.A.; Fox, J.G. (1964), "Velocity of Gamma Rays from a Moving Source", Physical Review, 135 (4B): B1071–1075, Bibcode:1964PhRv..135.1071F, doi:10.1103/PhysRev.135.B1071 Frank, Philipp; Rothe, Hermann (1910), "Über die Transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte Systeme", Annalen der Physik, 339 (5): 825–855, Bibcode:1911AnP...339..825F, doi:10.1002/andp.19113390502 Augustin Fresnel (1816), "Sur la diffraction de la lumière", Annales de chimie et de physique, 1: 239–281 Hasenöhrl, Friedrich (1904), "Zur Theorie der Strahlung in bewegten Körpern" [On the Theory of Radiation in Moving Bodies], Annalen der Physik, 320 (12): 344–370, Bibcode:1904AnP...320..344H, doi:10.1002/andp.19043201206 Hasenöhrl, Friedrich (1905), "Zur Theorie der Strahlung in bewegten Körpern. Berichtigung" [On the Theory of Radiation in Moving Bodies. Correction], Annalen der Physik, 321 (3): 589–592, Bibcode:1905AnP...321..589H, doi:10.1002/andp.19053210312 Heaviside, Oliver (1894) [1888], "Electromagnetic waves, the propagation of potential, and the electromagnetic effects of a moving charge", Electrical papers, 2, pp. 490–499 Heaviside, Oliver (1889), "On the Electromagnetic Effects due to the Motion of Electrification through a Dielectric", Philosophical Magazine, 5, 27 (167): 324–339, doi:10.1080/14786448908628362 Herglotz, Gustav (1910) [1909], "Über den vom Standpunkt des Relativitätsprinzips aus als starr zu bezeichnenden Körper" [On bodies that are to be designated as "rigid" from the standpoint of the relativity principle], Annalen der Physik, 336 (2): 393–415, Bibcode:1910AnP...336..393H, doi:10.1002/andp.19103360208 Hertz, Heinrich (1890a), "Über die Grundgleichungen der Elektrodynamik für ruhende Körper", Annalen der Physik, 276 (8): 577–624, Bibcode:1890AnP...276..577H, doi:10.1002/andp.18902760803 Hertz, Heinrich (1890b), "Über die Grundgleichungen der Elektrodynamik für bewegte Körper", Annalen der Physik, 277 (11): 369–399, Bibcode:1890AnP...277..369H, doi:10.1002/andp.18902771102 Ignatowsky, W. v. (1910). "Einige allgemeine Bemerkungen über das Relativitätsprinzip" [Some General Remarks on the Relativity Principle]. Physikalische Zeitschrift. 11: 972–976. Ignatowsky, W. v. (1911). "Das Relativitätsprinzip". Archiv der Mathematik und Physik. 17, 18: 1–24, 17–40. Kaufmann, Walter (1902), "Die elektromagnetische Masse des Elektrons" [The Electromagnetic Mass of the Electron], Physikalische Zeitschrift, 4 (1b): 54–56 Kaufmann, Walter (1905), "Über die Konstitution des Elektrons" [On the Constitution of the Electron], Sitzungsberichte der Königlich Preußische Akademie der Wissenschaften, 45: 949–956 Kaufmann, Walter (1906), "Über die Konstitution des Elektrons" [On the Constitution of the Electron], Annalen der Physik, 324 (3): 487–553, Bibcode:1906AnP...324..487K, doi:10.1002/andp.19063240303 Lange, Ludwig (1885), "Ueber die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes", Philosophische Studien, 2: 266–297 Langevin, Paul (1908) [1904], "The Relations of Physics of Electrons to Other Branches of Science", International Congress of Arts and Science, 7: 121–156 Langevin, Paul (1905), "Sur l'impossibilité physique de mettre en évidence le mouvement de translation de la Terre", Comptes Rendus des Séances de l'Académie des Sciences, 140: 1171–1173 Langevin, P. (1911), "The evolution of space and time", Scientia, X: 31–54 (translated by J. B. Sykes, 1973). Larmor, Joseph (1897), "On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media", Philosophical Transactions of the Royal Society, 190: 205–300, Bibcode:1897RSPTA.190..205L, doi:10.1098/rsta.1897.0020 Larmor, Joseph (1900), Aether and Matter, Cambridge University Press Laub, Jakob (1907), "Zur Optik der bewegten Körper", Annalen der Physik, 328 (9): 738–744, Bibcode:1907AnP...328..738L, doi:10.1002/andp.19073280910 Laue, Max von (1907), "Die Mitführung des Lichtes durch bewegte Körper nach dem Relativitätsprinzip" [The Entrainment of Light by Moving Bodies in Accordance with the Principle of Relativity], Annalen der Physik, 328 (10): 989–990, Bibcode:1907AnP...328..989L, doi:10.1002/andp.19073281015 Laue, Max von (1911a), Das Relativitätsprinzip on the Internet Archive, Braunschweig: Vieweg External link in title= (help) Laue, Max von (1911b), "Zur Diskussion über den starren Körper in der Relativitätstheorie" [On the Discussion Concerning Rigid Bodies in the Theory of Relativity], Physikalische Zeitschrift, 12: 85–87 Laue, Max von (1911c), "Über einen Versuch zur Optik der bewegten Körper" [On an Experiment on the Optics of Moving Bodie], Münchener Sitzungsberichte, 1911: 405–412 Laue, Max von (1913), Das Relativitätsprinzip (2 ed.), Braunschweig: Vieweg Lewis, Gilbert N. (1908), "A revision of the Fundamental Laws of Matter and Energy", Philosophical Magazine, 16: 705–717, doi:10.1080/14786441108636549 Lewis, Gilbert N.; Tolman, Richard C. (1909), "The Principle of Relativity, and Non-Newtonian Mechanics", Proceedings of the American Academy of Arts and Sciences, 44: 709–726, doi:10.2307/20022495 Lewis, Gilbert N.; Wilson, Edwin B. (1912), "The Space-time Manifold of Relativity. The Non-Euclidean Geometry of Mechanics and Electromagnetics on the Internet Archive", Proceedings of the American Academy of Arts and Sciences, 48: 387–507, doi:10.2307/20022840 External link in title= (help) Lorentz, Hendrik Antoon (1886), "De l'influence du mouvement de la terre sur les phénomènes lumineux", Archives néerlandaises des sciences exactes et naturelles, 21: 103–176 Lorentz, Hendrik Antoon (1892a), "La Théorie electromagnétique de Maxwell et son application aux corps mouvants on the Internet Archive", Archives néerlandaises des sciences exactes et naturelles, 25: 363–552 External link in title= (help) Lorentz, Hendrik Antoon (1892b), "De relatieve beweging van de aarde en den aether" [The Relative Motion of the Earth and the Aether], Zittingsverlag Akad. V. Wet., 1: 74–79 Lorentz, Hendrik Antoon (1895), Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten Körpern [Attempt of a Theory of Electrical and Optical Phenomena in Moving Bodies], Leiden: E.J. Brill Lorentz, Hendrik Antoon (1899), "Simplified Theory of Electrical and Optical Phenomena in Moving Systems", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 1: 427–442 Lorentz, Hendrik Antoon (1900), "Considerations on Gravitation", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 2: 559–574 Lorentz, Hendrik Antoon (1904a), "Weiterbildung der Maxwellschen Theorie. Elektronentheorie.", Encyclopädie der mathematischen Wissenschaften, 5 (2): 145–288 Lorentz, Hendrik Antoon (1904b), "Electromagnetic phenomena in a system moving with any velocity smaller than that of light", Proceedings of the Royal Netherlands Academy of Arts and Sciences, 6: 809–831 Lorentz, Hendrik Antoon (1931) [1910], Lecture on theoretical physics, Vol.3, London: MacMillan Lorentz, Hendrik Antoon; Einstein, Albert; Minkowski, Hermann (1913), Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. on the Internet Archive, Leipzig & Berlin: B.G. Teubner External link in title= (help) Lorentz, Hendrik Antoon (1914), Das Relativitätsprinzip. Drei Vorlesungen gehalten in Teylers Stiftung zu Haarlem, Leipzig and Berlin: B.G. Teubner Lorentz, Hendrik Antoon (1914), "La Gravitation", Scientia, 16: 28–59 Lorentz, Hendrik Antoon (1916), The theory of electrons and its applications to the phenomena of light and radiant heat on the Internet Archive, Leipzig & Berlin: B.G. Teubner External link in title= (help) Lorentz, Hendrik Antoon (1921), "Deux Mémoires de
Lorentz, Hendrik Antoon; Lorentz, H. A.; Miller, D. C.; Kennedy, R. J.; Hedrick, E. R.; Epstein, P. S. (1928), "Conference on the Michelson-Morley Experiment", The Astrophysical Journal, 68: 345–351, Bibcode:1928ApJ....68..341M, doi:10.1086/143148 Mach, Ernst (1912) [1883], Die Mechanik in ihrer Entwicklung (PDF), Leipzig: Brockhaus Maxwell, James Clerk (1864), "A Dynamical Theory of the Electromagnetic Field", Philosophical Transactions of the Royal Society, 155: 459–512, Bibcode:1865RSPT..155..459C, doi:10.1098/rstl.1865.0008 Maxwell, James Clerk (1873), "§ 792", A Treatise on electricity and magnetism on the Internet Archive, 2, London: Macmillan & Co., p. 391 External link in title= (help) Michelson, Albert A. (1881), "The Relative Motion of the Earth and the Luminiferous Ether", American Journal of Science, 22: 120–129, doi:10.2475/ajs.s3-22.128.120 Michelson, Albert A.; Morley, Edward W. (1886), "Influence of Motion of the Medium on the Velocity of Light", American Journal of Science, 31: 377–386, doi:10.2475/ajs.s3-31.185.377 Michelson, Albert A.; Morley, Edward W. (1887), "On the Relative Motion of the Earth and the Luminiferous Ether", American Journal of Science, 34: 333–345, doi:10.2475/ajs.s3-34.203.333 Michelson, Albert A.; Gale, Henry G. (1925), "The Effect of the Earth's Rotation on the Velocity of Light", The Astrophysical Journal, 61: 140–145, Bibcode:1925ApJ....61..140M, doi:10.1086/142879 Minkowski, Hermann (1915) [1907], "Das Relativitätsprinzip", Annalen der Physik, 352 (15): 927–938, Bibcode:1915AnP...352..927M, doi:10.1002/andp.19153521505 Minkowski, Hermann (1908) [1907], "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern" [The Fundamental Equations for Electromagnetic Processes in Moving Bodies], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: 53–111 (English translation in 1920 by Meghnad Saha). Minkowski, Hermann (1909) [1908], "Raum und Zeit", Physikalische Zeitschrift, 10: 75–88 Various English translations on Wikisource: Space and Time Mosengeil, Kurd von (1907), "Theorie der stationären Strahlung in einem gleichförmig bewegten Hohlraum", Annalen der Physik, 327 (5): 867–904, Bibcode:1907AnP...327..867V, doi:10.1002/andp.19073270504 Neumann, Carl (1870), Ueber die Principien der Galilei-Newtonschen Theorie on the Internet Archive, Leipzig: B.G. Teubner External link in title= (help) Neumann, Günther (1914), "Die träge Masse schnell bewegter Elektronen", Annalen der Physik, 350 (20): 529–579, Bibcode:1914AnP...350..529N, doi:10.1002/andp.19143502005 Nordström, Gunnar (1913), "Zur Theorie der
Palagyi, Menyhért (1901), Neue Theorie des Raumes und der Zeit, Leipzig: Wilhelm Engelmann Planck, Max (1906a), "Das Prinzip der Relativität und die Grundgleichungen der Mechanik" [The Principle of Relativity and the Fundamental Equations of Mechanics], Verhandlungen Deutsche Physikalische Gesellschaft, 8: 136–141 Planck, Max (1906b), "Die Kaufmannschen Messungen der Ablenkbarkeit der β-Strahlen in ihrer Bedeutung für die Dynamik der Elektronen" [The Measurements of Kaufmann on the Deflectability of β-Rays in their Importance for the Dynamics of the Electrons], Physikalische Zeitschrift, 7: 753–761 Planck, Max (1907), "Zur Dynamik bewegter Systeme" [On the Dynamics of Moving Systems], Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, Berlin, Erster Halbband (29): 542–570 Planck, Max (1908), "Bemerkungen zum Prinzip der Aktion und Reaktion in der allgemeinen Dynamik" [Notes on the Principle of Action and Reaction in General Dynamics], Physikalische Zeitschrift, 9 (23): 828–830 Planck, Max (1915) [1909], "General Dynamics. Principle of Relativity", Eight lectures on theoretical physics, New York: Columbia University Press Poincaré, Henri (1889), Théorie mathématique de la lumière, 1, Paris: G. Carré & C. Naud Preface partly reprinted in "Science and Hypothesis", Ch. 12. Poincaré, Henri (1895), "A propos de la Théorie de M. Larmor", L'éclairage électrique, 5: 5–14 Reprinted in Poincaré, Oeuvres, tome IX, pp. 395–413 Poincaré, Henri (1913) [1898], "The Measure of Time", The Foundations of Science (The Value of Science), New York: Science Press, pp. 222–234 Poincaré, Henri (1900a), "Les relations entre la physique expérimentale et la physique mathématique", Revue générale des sciences pures et appliquées, 11: 1163–1175 . Reprinted in "Science and Hypothesis", Ch. 9–10. Poincaré, Henri (1900b), "La théorie de Lorentz et le principe de réaction", Archives néerlandaises des sciences exactes et naturelles, 5: 252–278 . See also the English translation. Poincaré, Henri (1901a), "Sur les principes de la mécanique", Bibliothèque du Congrès international de philosophie: 457–494 . Reprinted in "Science and Hypothesis", Ch. 6–7. Poincaré, Henri (1901b), Électricité et optique on the Internet Archive, Paris: Gauthier-Villars External link in title= (help) Poincaré, Henri (1902), Science and Hypothesis, London and Newcastle-on-Cyne (1905): The Walter Scott publishing Co. Poincaré, Henri (1906) [1904], "The Principles of Mathematical Physics", Congress of arts and science, universal exposition, St. Louis, 1904, 1, Boston and New York: Houghton, Mifflin and Company, pp. 604–622 Poincaré, Henri (1905b), "Sur la dynamique de l'électron" [On the Dynamics of the Electron], Comptes Rendus, 140: 1504–1508 . Poincaré, Henri (1906) [1905], "Sur la dynamique de l'électron" [On the Dynamics of the Electron], Rendiconti del Circolo matematico di Palermo, 21: 129–176, doi:10.1007/BF03013466 Poincaré, Henri (1913) [1908], "The New Mechanics", The foundations of science (Science and Method), New York: Science Press, pp. 486–522 Poincaré, Henri (1909), "La Mécanique nouvelle (Lille)", Revue scientifique, Paris, 47: 170–177 Poincaré, Henri (1910) [1909], "The New Mechanics (Göttingen)", Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik, Leipzig und Berlin: B.G.Teubner, pp. 41–47 Poincaré, Henri (1911), Die neue Mechanik (Berlin), Leipzig & Berlin: B.G. Teubner Poincaré, Henri (1912), "L'hypothèse des quanta", Revue scientifique, 17: 225–232 Reprinted in Poincaré 1913, Ch. 6. Poincaré, Henri (1913), Last Essays on the Internet Archive, New York: Dover Publication (1963) External link in title= (help) Ritz, Walter (1908), "Recherches critiques sur l'Électrodynamique Générale", Annales de Chimie et de Physique, 13: 145–275 , see English translation. Robb, Alfred A. (1911), Optical Geometry of Motion: A New View of the Theory of Relativity on the Internet Archive, Cambridge: W. Heffer External link in title= (help) Sagnac, Georges (1913), "L'éther lumineux démontré par l'effet du vent relatif d'éther dans un interféromètre en rotation uniforme" [The demonstration of the luminiferous aether by an interferometer in uniform rotation], Comptes Rendus, 157: 708–710 Sagnac, Georges (1913), "Sur la preuve de la réalité de l'éther lumineux par l'expérience de l'interférographe tournant" [On the proof of the reality of the luminiferous aether by the experiment with a rotating interferometer], Comptes Rendus, 157: 1410–1413 Searle, George Frederick Charles (1897), "On the Steady Motion of an Electrified Ellipsoid", Philosophical Magazine, 5, 44 (269): 329–341, doi:10.1080/14786449708621072 Sommerfeld, Arnold (1910), "Zur Relativitätstheorie I: Vierdimensionale Vektoralgebra" [On the Theory of Relativity I: Four-dimensional Vector Algebra], Annalen der Physik, 337 (9): 749–776, Bibcode:1910AnP...337..749S, doi:10.1002/andp.19103370904 Sommerfeld, Arnold (1910), "Zur Relativitätstheorie II: Vierdimensionale" [On the Theory of Relativity II: Four-dimensional Vector Analysis], Annalen der Physik, 338 (14): 649–689, Bibcode:1910AnP...338..649S, doi:10.1002/andp.19103381402 Stokes, George Gabriel (1845), "On the Aberration of Light", Philosophical Magazine, 27: 9–15, doi:10.1080/14786444508645215 Streintz, Heinrich (1883), Die physikalischen Grundlagen der Mechanik on the Internet Archive, Leipzig: B.G. Teubner External link in title= (help) Thomson, Joseph John (1881), "On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies", Philosophical Magazine, 5, 11 (68): 229–249, doi:10.1080/14786448108627008 Tolman, Richard Chase (1912), "The mass of a moving body", Philosophical Magazine, 23: 375–380, doi:10.1080/14786440308637231 Varičak, Vladimir (1911), "Zum Ehrenfestschen Paradoxon" [On Ehrenfest's Paradox], Physikalische Zeitschrift, 12: 169 Varičak, Vladimir (1912), "Über die nichteuklidische Interpretation der Relativtheorie" [On the Non-Euclidean Interpretation of the Theory of Relativity], Jahresbericht der Deutschen Mathematiker-Vereinigung, 21: 103–127 Voigt, Woldemar (1887), "Ueber das Doppler'sche Princip" [On the Principle of Doppler], Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen (2): 41–51 Wien, Wilhelm (1900), "Über die Möglichkeit einer elektromagnetischen Begründung der Mechanik" [On the Possibility of an Electromagnetic Foundation of Mechanics], Annalen der Physik, 310 (7): 501–513, Bibcode:1901AnP...310..501W, doi:10.1002/andp.19013100703 Wien, Wilhelm (1904a), "Über die Differentialgleichungen der Elektrodynamik für bewegte Körper. I", Annalen der Physik, 318 (4): 641–662, Bibcode:1904AnP...318..641W, doi:10.1002/andp.18943180402 Wien, Wilhelm (1904a), "Über die Differentialgleichungen der Elektrodynamik für bewegte Körper. II", Annalen der Physik, 318 (4): 663–668, Bibcode:1904AnP...318..663W, doi:10.1002/andp.18943180403 Wien, Wilhelm (1904b), "Erwiderung auf die Kritik des Hrn. M. Abraham", Annalen der Physik, 319 (8): 635–637, Bibcode:1904AnP...319..635W, doi:10.1002/andp.19043190817 Notes and secondary sources[edit] ^ Chen, Bang-yen (2011). Pseudo-Riemannian Geometry,
[delta]-invariants and Applications. World Scientific. p. 92.
ISBN 981-4329-63-0. Extract of page 92
^ Whittaker (1951), 128ff
^ Whittaker (1951), 240ff
^ Whittaker (1951), 319ff
^ Janssen/Stachel (2004), 20
^ Whittaker (1951), 107ff
^ Whittaker (1951), 386f
^ Janssen/Stachel (2004), 4–15
^ Whittaker (1951), 390f
^ Whittaker (1951), 386ff
^ Janssen/Stachel (2004), 18–19
^ Janssen/Stachel (2004), 19–20
^ Miller (1981), 114–115
^ a b Pais (1982), Chap. 6b
^ Miller (1981), 99–100
^ Brown (2001)
^ Miller (1981), 27–29
^ Janssen (1995), Chap. 3.3
^ Janssen (1995), Ch. 3.3
^ a b c Miller (1982)
^ Zahar (1989)
^ a b Galison (2002)
^ a b Janssen (1995), Ch. 3.1
^ Macrossan (1986)
^ a b Janssen/Stachel (2004), 31–32
^ Miller (1981), 46
^ Whittaker (1951), 306ff; (1953) 51f
^ Janssen (1995), Ch. 3.4
^ Miller (1981), 46, 103
^ a b c Darrigol (2005), 18–21
^ Miller (1981), 47–54
^ Miller (1981), 61–67
^ Miller (1981), 359–360
^ Lange (1886)
^ Giulini (2001), Ch. 4
^ DiSalle (2002)
^ Goenner (2008)
^ Archibald (1914)
^ Boyce Gibson (1928)
^ Hentschel (1990), 153f.
^ Galison (2003)
^ Katzir (2005), 272–275
^ Darrigol (2005), 10–11
^ Galison (2002), Ch. 4 – Etherial Time
^ Darrigol (2000), 369–372
^ Janssen (1995), Ch. 3.3, 3.4
^ Miller (1981), Chap. 1, Footnote 57
^ Miller (1981), 75ff
^ Katzir (2005), 275–277
^ Miller (1981), 79–86
^ Katzir (2005), 280–288
^ a b Walter (2007), Ch. 1
^ Miller (1981), 216–217
^ Whittaker (1953), 27–77
^ Zahar (1989), 149–200
^ Logunov (2004)
^ Messager, V.; R. Gilmore; C. Letellier (2012). "
Archibald, R.C. (1914), "Time as a fourth dimension", Bull. Amer. Math. Soc., 20 (8): 409–412, doi:10.1090/S0002-9904-1914-02511-X Born, Max (1964), Einstein's Theory of Relativity, Dover Publications, ISBN 0-486-60769-0 Born, Max (1956), Physics in my generation, London & New York: Pergamon Press, pp. 189–206 Brown, Harvey R. (2001), "The origins of length contraction: I. The FitzGerald-Lorentz deformation hypothesis", American Journal of Physics, 69 (10): 1044–1054, arXiv:gr-qc/0104032 , Bibcode:2001AmJPh..69.1044B, doi:10.1119/1.1379733 Darrigol, Olivier (2000),
Darrigol, Olivier (2004), "The Mystery of the Einstein-Poincaré Connection", Isis, 95 (4): 614–626, doi:10.1086/430652, PMID 16011297 Darrigol, Olivier (2005), "The Genesis of the theory of relativity" (PDF), Séminaire Poincaré, 1: 1–22, doi:10.1007/3-7643-7436-5_1 Robert DiSalle (Summer 2002), "Space and Time: Inertial Frames", in Edward N. Zalta, The Stanford Encyclopedia of Philosophy Einstein, Albert (1989), "The Swiss Years: Writings, 1900–1909", in Stachel, John; et al., The Collected Papers of Albert Einstein, 2, Princeton: Princeton University Press, ISBN 0-691-08526-9 Galison, Peter (2003), Einstein's Clocks, Poincaré's Maps: Empires of Time, New York: W.W. Norton, ISBN 0-393-32604-7 Giulini, Domenico (2001), "Das Problem der Trägheit" (PDF), Preprint, Max-Planck Institut für Wissenschaftsgeschichte, 190: 11–12, 25–26 Goenner, Hubert (2008), "On the history of geometrization of space-time", 414. Heraeus-Seminar, arXiv:0811.4529 , Bibcode:2008arXiv0811.4529G . Hentschel, Klaus (1990), Interpretationen und Fehlinterpretationen der speziellen und der allgemeinen Relativitätstheorie durch Zeitgenossen Albert Einsteins, Basel – Boston – Bonn: Birkhäuser, ISBN 3-7643-2438-4 Holton, Gerald (1988), Thematic Origins of Scientific Thought: Kepler to Einstein, Harvard University Press, ISBN 0-674-87747-0 Janssen, Michel (1995), A Comparison between Lorentz's Ether Theory
and
Janssen, Michel; Mecklenburg, Matthew (2007), "From classical to relativistic mechanics: Electromagnetic models of the electron", in V. F. Hendricks; et al., Interactions: Mathematics, Physics and Philosophy, Dordrecht: Springer, pp. 65–134 Janssen, Michel; Stachel, John (2008), The Optics and Electrodynamics of Moving Bodies (PDF) Katzir, Shaul (2005), "Poincaré's Relativistic Physics: Its Origins and Nature", Phys. Perspect., 7 (3): 268–292, Bibcode:2005PhP.....7..268K, doi:10.1007/s00016-004-0234-y Keswani, G. H., Kilmister, C. W. (1983), "Intimations Of Relativity: Relativity Before Einstein", Brit. J. Phil. Sci., 34 (4): 343–354, doi:10.1093/bjps/34.4.343, archived from the original on March 26, 2009 CS1 maint: Multiple names: authors list (link) Klein, Felix (1921) [1910], "Über die geometrischen Grundlagen der Lorentzgruppe", Gesammelte mathematische Abhandlungen, 1: 533–552, doi:10.1007/978-3-642-51960-4_31 Kostro, L. (1992), "An outline of the history of Einstein's relativistic ether concept", in Jean Eisenstaedt; Anne J. Kox, Studies in the history of general relativity, 3, Boston-Basel-Berlin: Birkhäuser, pp. 260–280, ISBN 0-8176-3479-7 Lange, Ludwig (1886), Die geschichtliche Entwicklung des Bewegungsbegriffes, Leipzig: Wilhelm Engelmann Laue, Max von (1921), Die Relativitätstheorie, Braunschweig: Friedr. Vieweg & Sohn . = 4. Edition of Laue (1911). Macrossan, M. N. (1986), "A Note on Relativity Before Einstein", Brit. J. Phil. Sci., 37: 232–234, doi:10.1093/bjps/37.2.232 Alberto A. Mart́ínez (2009), Kinematics: the lost origins of Einstein's relativity, Johns Hopkins University Press, ISBN 0-8018-9135-3 Miller, Arthur I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911), Reading: Addison–Wesley, ISBN 0-201-04679-2 Norton, John D. (2004), "Einstein's Investigations of Galilean
Covariant
Norton, John D. (2005), "Einstein, Nordström and the early demise of scalar, lorentz covariant theories of gravitation" (PDF), in Renn, Jürgen, The Genesis of General Relativity (Vol. 1), Printed in the Netherlands: Kluwer Pais, Abraham (1982), Subtle is the Lord: The Science and the Life of Albert Einstein, New York: Oxford University Press, ISBN 0-19-520438-7 Pauli, Wolfgang (1921), "Die Relativitätstheorie", Encyclopädie der mathematischen Wissenschaften, 5 (2): 539–776 In English: Pauli, W. (1981) [1921]. Theory of Relativity. Fundamental Theories of Physics. 165. Dover Publications. ISBN 0-486-64152-X. Polanyi, Michael (1974), Personal Knowledge: Towards a Post-Critical Philosophy, Chicago: University Press, ISBN 0-226-67288-3 Rindler, Wolfgang (2001), Relativity: Special, General, and Cosmological, Oxford University Press, ISBN 0-19-850836-0 Rynasiewicz, Robert; Renn, Jürgen. (2006), "The turning point for Einstein's annus mirabilis.", Studies in History and Philosophy of Modern Physics, 31 (1): 5–35, Bibcode:2006SHPMP..37....5R, doi:10.1016/j.shpsb.2005.12.002 Schaffner, Kenneth F. (1972), Nineteenth-century aether theories, Oxford: Pergamon Press, pp. 99–117 und 255–273, ISBN 0-08-015674-6 Stachel, John (1982), "Einstein and Michelson: the Context of Discovery and Context of Justification", Astronomische Nachrichten, 303 (1): 47–53, Bibcode:1982AN....303...47S, doi:10.1002/asna.2103030110 Stachel, John (2002), Einstein from "B" to "Z", Boston: Birkhäuser, ISBN 0-8176-4143-2 Staley, Richard (2009), Einstein's generation. The origins of the relativity revolution, Chicago: University of Chicago Press, ISBN 0-226-77057-5 Walter, Scott A. (1999a), "Minkowski, mathematicians, and the mathematical theory of relativity", in H. Goenner; J. Renn; J. Ritter; T. Sauer, Einstein Studies, 7, Birkhäuser, pp. 45–86 Walter, Scott A. (1999b), "The non-Euclidean style of Minkowskian relativity", in J. Gray, The Symbolic Universe: Geometry and Physics, Oxford University Press, pp. 91–127 Walter, Scott A. (2005), "
Walter, Scott A. (2007), "Breaking in the 4-vectors: The four-dimensional movement in gravitation, 1905–1910", in Renn, J., The Genesis of General Relativity, 3, Berlin: Springer, pp. 193–252 Warwick, Andrew (2003), Masters of Theory: Cambridge and the Rise of Mathematical Physics, Chicago: University of Chicago Press, ISBN 0-226-87375-7 Whittaker, Edmund Taylor (1910), A History of the theories of aether and electricity (1. ed.), Dublin: Longman, Green and Co. Whittaker, Edmund Taylor (1951), A History of the theories of aether and electricity Vol. 1: The classical theories (2. ed.), London: Nelson Whittaker, Edmund Taylor (1953), "The relativity theory of Poincaré and Lorentz", A History of the theories of aether and electricity; Vol. 2: The modern theories 1900–1926, London: Nelson, pp. 27–77 Zahar, Elie (1989), Einstein's Revolution: A Study in Heuristic, Chicago: Open Court Publishing Company, ISBN 0-8126-9067-2 Non mainstream Bjerknes, Christopher Jon (2002), "A Short History of the Concept of
Relative Simultaneity in the
Logunov, A.A. (2004),
External links[edit] Wikisource has original works on the topic: Historical Papers on Relativity O'Connor, John J.; Robertson, Edmund F., "
^ For many other experiments on light constancy and relativity, see PhysicsFaq: What is the experimental basis of s |