The Info List - History Of Astronomy

--- Advertisement ---

is the oldest of the natural sciences, dating back to antiquity, with its origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory: vestiges of these are still found in astrology, a discipline long interwoven with public and governmental astronomy, and not completely disentangled from it until a few centuries ago in the Western World
Western World
(see astrology and astronomy). In some cultures, astronomical data was used for astrological prognostication. Ancient astronomers were able to differentiate between stars and planets, as stars remain relatively fixed over the centuries while planets will move an appreciable amount during a comparatively short time.


1 Early history 2 Prehistoric Europe 3 Ancient times

3.1 Mesopotamia 3.2 India 3.3 Greece and Hellenistic
world 3.4 Egypt 3.5 China 3.6 Mesoamerica

4 Medieval Middle East 5 Medieval Western Europe 6 Renaissance
Period 7 Uniting physics and astronomy 8 Completing the solar system 9 Modern astronomy 10 Cosmology
and the expansion of the universe 11 New windows into the Cosmos open 12 See also 13 Notes 14 Historians of astronomy 15 References 16 Further reading 17 Refereed Journals 18 External links

Early history[edit] Early cultures identified celestial objects with gods and spirits.[1] They related these objects (and their movements) to phenomena such as rain, drought, seasons, and tides. It is generally believed that the first astronomers were priests, and that they understood celestial objects and events to be manifestations of the divine, hence early astronomy's connection to what is now called astrology. Ancient structures with possibly astronomical alignments (such as Stonehenge) probably fulfilled astronomical, religious, and social functions. Calendars of the world have often been set by observations of the Sun and Moon
(marking the day, month and year), and were important to agricultural societies, in which the harvest depended on planting at the correct time of year, and for which the nearly full moon was the only lighting for night-time travel into city markets.[2]

sunset at the equinox from the prehistoric site of Pizzo Vento at Fondachelli Fantina, Sicily

The common modern calendar is based on the Roman calendar. Although originally a lunar calendar, it broke the traditional link of the month to the phases of the moon and divided the year into twelve almost-equal months, that mostly alternated between thirty and thirty-one days. Julius Caesar
Julius Caesar
instigated calendar reform in 46  BCE
and introduced what is now called the Julian calendar, based upon the 365 ​1⁄4 day year length originally proposed by the 4th century  BCE
Greek astronomer Callippus. Prehistoric Europe[edit] Main article: Archaeoastronomy

The Nebra sky disk
Nebra sky disk
1600 BC

Calendrical functions of the Berlin Gold Hat
Berlin Gold Hat
c. 1000 BC

Since 1990 our understanding of prehistoric Europeans has been radically changed by discoveries of ancient astronomical artifacts throughout Europe. The artifacts demonstrate that Neolithic and Bronze Age Europeans had a sophisticated knowledge of mathematics and astronomy. Among the discoveries are:

Bone sticks from locations like Africa and Europe
from possibly as long ago as 35,000 BCE
are marked in ways that tracked the moon's phases.[3] The Warren Field calendar in the Dee River valley of Scotland's Aberdeenshire. First excavated in 2004 but only in 2013 revealed as a find of huge significance, it is to date the world´s oldest known calendar, created around 8000 BC and predating all other calendars by some 5,000 years. The calendar takes the form of an early Mesolithic monument containing a series of 12 pits which appear to help the observer track lunar months by mimicking the phases of the moon. It also aligns to sunrise at the winter solstice, thus coordinating the solar year with the lunar cycles. The monument had been maintained and periodically reshaped, perhaps up to hundreds of times, in response to shifting solar/lunar cycles, over the course of 6,000 years, until the calendar fell out of use around 4,000 years ago.[4][5][6][7] Goseck circle
Goseck circle
is located in Germany
and belongs to the linear pottery culture. First discovered in 1991, its significance was only clear after results from archaeological digs became available in 2004. The site is one of hundreds of similar circular enclosures built in a region encompassing Austria, Germany, and the Czech Republic
Czech Republic
during a 200-year period starting shortly after 5000 BC.[8] The Nebra sky disc is a Bronze Age
Bronze Age
bronze disc that was buried in Germany, not far from the Goseck circle, around 1600 BC. It measures about 30 cm diameter with a mass of 2.2 kg and displays a blue-green patina (from oxidization) inlaid with gold symbols. Found by archeological thieves in 1999 and recovered in Switzerland
in 2002, it was soon recognized as a spectacular discovery, among the most important of the 20th century.[9][10] Investigations revealed that the object had been in use around 400 years before burial (2000 BC), but that its use had been forgotten by the time of burial. The inlaid gold depicted the full moon, a crescent moon about 4 or 5 days old, and the Pleiades
star cluster in a specific arrangement forming the earliest known depiction of celestial phenomena. Twelve lunar months pass in 354 days, requiring a calendar to insert a leap month every two or three years in order to keep synchronized with the solar year's seasons (making it lunisolar). The earliest known descriptions of this coordination were recorded by the Babylonians in 6th or 7th centuries BC, over one thousand years later. Those descriptions verified ancient knowledge of the Nebra sky disc's celestial depiction as the precise arrangement needed to judge when to insert the intercalary month into a lunisolar calendar, making it an astronomical clock for regulating such a calendar a thousand or more years before any other known method.[11] The Kokino
site, discovered in 2001, sits atop an extinct volcanic cone at an elevation of 1,013 metres (3,323 ft), occupying about 0.5 hectares overlooking the surrounding countryside in Macedonia. A Bronze Age
Bronze Age
astronomical observatory was constructed there around 1900 BC and continuously served the nearby community that lived there until about 700 BC. The central space was used to observe the rising of the sun and full moon. Three markings locate sunrise at the summer and winter solstices and at the two equinoxes. Four more give the minimum and maximum declinations of the full moon: in summer, and in winter. Two measure the lengths of lunar months. Together, they reconcile solar and lunar cycles in marking the 235 lunations that occur during 19 solar years, regulating a lunar calendar. On a platform separate from the central space, at lower elevation, four stone seats (thrones) were made in north-south alignment, together with a trench marker cut in the eastern wall. This marker allows the rising sun's light to fall on only the second throne, at midsummer (about July 31). It was used for ritual ceremony linking the ruler to the local sun god, and also marked the end of the growing season and time for harvest.[12] Golden hats of Germany, France
and Switzerland
dating from 1400-800 BC are associated with the Bronze Age
Bronze Age
Urnfield culture. The Golden hats are decorated with a spiral motif of the Sun
and the Moon. They were probably a kind of calendar used to calibrate between the lunar and solar calendars.[13][14] Modern scholarship has demonstrated that the ornamentation of the gold leaf cones of the Schifferstadt type, to which the Berlin Gold Hat
Berlin Gold Hat
example belongs, represent systematic sequences in terms of number and types of ornaments per band. A detailed study of the Berlin example, which is the only fully preserved one, showed that the symbols probably represent a lunisolar calendar. The object would have permitted the determination of dates or periods in both lunar and solar calendars.[15]

Ancient times[edit] Mesopotamia[edit] Main article: Mesopotamian astronomy Further information: Babylonian astrology
Babylonian astrology
and Babylonian calendar

Babylonian tablet recording Halley's comet
Halley's comet
in 164 BC.

The origins of Western astronomy can be found in Mesopotamia, the "land between the rivers" Tigris
and Euphrates, where the ancient kingdoms of Sumer, Assyria, and Babylonia
were located. A form of writing known as cuneiform emerged among the Sumerians around 3500–3000 BC. Our knowledge of Sumerian astronomy is indirect, via the earliest Babylonian star catalogues dating from about 1200 BC. The fact that many star names appear in Sumerian suggests a continuity reaching into the Early Bronze Age. Astral theology, which gave planetary gods an important role in Mesopotamian mythology
Mesopotamian mythology
and religion, began with the Sumerians. They also used a sexagesimal (base 60) place-value number system, which simplified the task of recording very large and very small numbers. The modern practice of dividing a circle into 360 degrees, of 60 minutes each, began with the Sumerians. For more information, see the articles on Babylonian numerals
Babylonian numerals
and mathematics. Classical sources frequently use the term Chaldeans for the astronomers of Mesopotamia, who were, in reality, priest-scribes specializing in astrology and other forms of divination. The first evidence of recognition that astronomical phenomena are periodic and of the application of mathematics to their prediction is Babylonian. Tablets dating back to the Old Babylonian period document the application of mathematics to the variation in the length of daylight over a solar year. Centuries of Babylonian observations of celestial phenomena are recorded in the series of cuneiform tablets known as the Enūma Anu Enlil. The oldest significant astronomical text that we possess is Tablet 63 of the Enūma Anu Enlil, the Venus tablet of Ammi-saduqa, which lists the first and last visible risings of Venus
over a period of about 21 years and is the earliest evidence that the phenomena of a planet were recognized as periodic. The MUL.APIN, contains catalogues of stars and constellations as well as schemes for predicting heliacal risings and the settings of the planets, lengths of daylight measured by a water clock, gnomon, shadows, and intercalations. The Babylonian GU text arranges stars in 'strings' that lie along declination circles and thus measure right-ascensions or time-intervals, and also employs the stars of the zenith, which are also separated by given right-ascensional differences.[16] A significant increase in the quality and frequency of Babylonian observations appeared during the reign of Nabonassar (747–733 BC). The systematic records of ominous phenomena in Babylonian astronomical diaries that began at this time allowed for the discovery of a repeating 18-year cycle of lunar eclipses, for example. The Greek astronomer Ptolemy
later used Nabonassar's reign to fix the beginning of an era, since he felt that the earliest usable observations began at this time. The last stages in the development of Babylonian astronomy
Babylonian astronomy
took place during the time of the Seleucid Empire
Seleucid Empire
(323–60 BC). In the 3rd century BC, astronomers began to use "goal-year texts" to predict the motions of the planets. These texts compiled records of past observations to find repeating occurrences of ominous phenomena for each planet. About the same time, or shortly afterwards, astronomers created mathematical models that allowed them to predict these phenomena directly, without consulting past records. A notable Babylonian astronomer from this time was Seleucus of Seleucia, who was a supporter of the heliocentric model. Babylonian astronomy
Babylonian astronomy
was the basis for much of what was done in Greek and Hellenistic
astronomy, in classical Indian astronomy, in Sassanian Iran, in Byzantium, in Syria, in Islamic astronomy, in Central Asia, and in Western Europe.[17] India[edit]

Historical Jantar Mantar observatory in Jaipur, India.

Main article: Indian astronomy Further information: Jyotisha Astronomy
in the Indian subcontinent dates back to the period of Indus Valley Civilization during 3rd millennium BCE, when it was used to create calendars.[18] As the Indus Valley civilization did not leave behind written documents, the oldest extant Indian astronomical text is the Vedanga Jyotisha, dating from the Vedic period.[19] Vedanga Jyotisha
describes rules for tracking the motions of the Sun
and the Moon
for the purposes of ritual. During the 6th century, astronomy was influenced by the Greek and Byzantine astronomical traditions.[18][20] Aryabhata
(476–550), in his magnum opus Aryabhatiya
(499), propounded a computational system based on a planetary model in which the Earth
was taken to be spinning on its axis and the periods of the planets were given with respect to the Sun. He accurately calculated many astronomical constants, such as the periods of the planets, times of the solar and lunar eclipses, and the instantaneous motion of the Moon.[21][22][page needed] Early followers of Aryabhata's model included Varahamihira, Brahmagupta, and Bhaskara II. Astronomy
was advanced during the Shunga Empire
Shunga Empire
and many star catalogues were produced during this time. The Shunga period is known[according to whom?] as the "Golden age of astronomy in India". It saw the development of calculations for the motions and places of various planets, their rising and setting, conjunctions, and the calculation of eclipses. Indian astronomers by the 6th century believed that comets were celestial bodies that re-appeared periodically. This was the view expressed in the 6th century by the astronomers Varahamihira
and Bhadrabahu, and the 10th-century astronomer Bhattotpala listed the names and estimated periods of certain comets, but it is unfortunately not known how these figures were calculated or how accurate they were.[23] Bhāskara II (1114–1185) was the head of the astronomical observatory at Ujjain, continuing the mathematical tradition of Brahmagupta. He wrote the Siddhantasiromani which consists of two parts: Goladhyaya (sphere) and Grahaganita (mathematics of the planets). He also calculated the time taken for the Earth
to orbit the sun to 9 decimal places. The Buddhist University of Nalanda
at the time offered formal courses in astronomical studies. Other important astronomers from India include Madhava of Sangamagrama, Nilakantha Somayaji and Jyeshtadeva, who were members of the Kerala school of astronomy and mathematics from the 14th century to the 16th century. Nilakantha Somayaji, in his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, developed his own computational system for a partially heliocentric planetary model, in which Mercury, Venus, Mars, Jupiter
and Saturn
orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system
Tychonic system
later proposed by Tycho Brahe in the late 16th century. Nilakantha's system, however, was mathematically more efficient than the Tychonic system, due to correctly taking into account the equation of the centre and latitudinal motion of Mercury and Venus. Most astronomers of the Kerala school of astronomy and mathematics who followed him accepted his planetary model.[24][25] Greece and Hellenistic
world[edit] Main article: Greek astronomy

The Antikythera Mechanism
Antikythera Mechanism
was an analog computer from 150–100 BC designed to calculate the positions of astronomical objects.

The Ancient Greeks
Ancient Greeks
developed astronomy, which they treated as a branch of mathematics, to a highly sophisticated level. The first geometrical, three-dimensional models to explain the apparent motion of the planets were developed in the 4th century BC by Eudoxus of Cnidus and Callippus of Cyzicus. Their models were based on nested homocentric spheres centered upon the Earth. Their younger contemporary Heraclides Ponticus proposed that the Earth
rotates around its axis. A different approach to celestial phenomena was taken by natural philosophers such as Plato
and Aristotle. They were less concerned with developing mathematical predictive models than with developing an explanation of the reasons for the motions of the Cosmos. In his Timaeus, Plato
described the universe as a spherical body divided into circles carrying the planets and governed according to harmonic intervals by a world soul.[26] Aristotle, drawing on the mathematical model of Eudoxus, proposed that the universe was made of a complex system of concentric spheres, whose circular motions combined to carry the planets around the earth.[27] This basic cosmological model prevailed, in various forms, until the 16th century. In the 3rd century BC Aristarchus of Samos
Aristarchus of Samos
was the first to suggest a heliocentric system, although only fragmentary descriptions of his idea survive.[28] Eratosthenes, using the angles of shadows created at widely separated regions, estimated the circumference of the Earth with great accuracy.[29] Greek geometrical astronomy developed away from the model of concentric spheres to employ more complex models in which an eccentric circle would carry around a smaller circle, called an epicycle which in turn carried around a planet. The first such model is attributed to Apollonius of Perga
Apollonius of Perga
and further developments in it were carried out in the 2nd century BC by Hipparchus
of Nicea. Hipparchus
made a number of other contributions, including the first measurement of precession and the compilation of the first star catalog in which he proposed our modern system of apparent magnitudes. The Antikythera
mechanism, an ancient Greek astronomical observational device for calculating the movements of the Sun
and the Moon, possibly the planets, dates from about 150–100 BC, and was the first ancestor of an astronomical computer. It was discovered in an ancient shipwreck off the Greek island of Antikythera, between Kythera
and Crete. The device became famous for its use of a differential gear, previously believed to have been invented in the 16th century, and the miniaturization and complexity of its parts, comparable to a clock made in the 18th century. The original mechanism is displayed in the Bronze collection of the National Archaeological Museum of Athens, accompanied by a replica. Depending on the historian's viewpoint, the acme or corruption of physical Greek astronomy
Greek astronomy
is seen with Ptolemy
of Alexandria, who wrote the classic comprehensive presentation of geocentric astronomy, the Megale Syntaxis (Great Synthesis), better known by its Arabic title Almagest, which had a lasting effect on astronomy up to the Renaissance. In his Planetary Hypotheses, Ptolemy
ventured into the realm of cosmology, developing a physical model of his geometric system, in a universe many times smaller than the more realistic conception of Aristarchus of Samos
Aristarchus of Samos
four centuries earlier. Egypt[edit] Main article: Egyptian astronomy

Chart from Senemut's tomb, 18th dynasty[30]

The precise orientation of the Egyptian pyramids
Egyptian pyramids
affords a lasting demonstration of the high degree of technical skill in watching the heavens attained in the 3rd millennium BC. It has been shown the Pyramids were aligned towards the pole star, which, because of the precession of the equinoxes, was at that time Thuban, a faint star in the constellation of Draco.[31] Evaluation of the site of the temple of Amun-Re
at Karnak, taking into account the change over time of the obliquity of the ecliptic, has shown that the Great Temple was aligned on the rising of the midwinter sun.[32] The length of the corridor down which sunlight would travel would have limited illumination at other times of the year. Astronomy
played a considerable part in religious matters for fixing the dates of festivals and determining the hours of the night. The titles of several temple books are preserved recording the movements and phases of the sun, moon and stars. The rising of Sirius
(Egyptian: Sopdet, Greek: Sothis) at the beginning of the inundation was a particularly important point to fix in the yearly calendar. Writing in the Roman era, Clement of Alexandria
Clement of Alexandria
gives some idea of the importance of astronomical observations to the sacred rites:

And after the Singer advances the Astrologer (ὡροσκόπος), with a horologium (ὡρολόγιον) in his hand, and a palm (φοίνιξ), the symbols of astrology. He must know by heart the Hermetic astrological books, which are four in number. Of these, one is about the arrangement of the fixed stars that are visible; one on the positions of the sun and moon and five planets; one on the conjunctions and phases of the sun and moon; and one concerns their risings.[33]

The Astrologer's instruments (horologium and palm) are a plumb line and sighting instrument[clarification needed]. They have been identified with two inscribed objects in the Berlin Museum; a short handle from which a plumb line was hung, and a palm branch with a sight-slit in the broader end. The latter was held close to the eye, the former in the other hand, perhaps at arms length. The "Hermetic" books which Clement refers to are the Egyptian theological texts, which probably have nothing to do with Hellenistic
Hermetism.[34] From the tables of stars on the ceiling of the tombs of Rameses VI
Rameses VI
and Rameses IX
Rameses IX
it seems that for fixing the hours of the night a man seated on the ground faced the Astrologer in such a position that the line of observation of the pole star passed over the middle of his head. On the different days of the year each hour was determined by a fixed star culminating or nearly culminating in it, and the position of these stars at the time is given in the tables as in the centre, on the left eye, on the right shoulder, etc. According to the texts, in founding or rebuilding temples the north axis was determined by the same apparatus, and we may conclude that it was the usual one for astronomical observations. In careful hands it might give results of a high degree of accuracy. China[edit]

Printed star map of Su Song
Su Song
(1020–1101) showing the south polar projection.

Main article: Chinese astronomy See also: Book
of Silk, Chinese astrology, and Timeline of Chinese astronomy The astronomy of East Asia
East Asia
began in China. Solar term was completed in Warring States period. The knowledge of Chinese astronomy
Chinese astronomy
was introduced into East Asia. Astronomy
in China
has a long history. Detailed records of astronomical observations were kept from about the 6th century BC, until the introduction of Western astronomy and the telescope in the 17th century. Chinese astronomers were able to precisely predict eclipses. Much of early Chinese astronomy
Chinese astronomy
was for the purpose of timekeeping. The Chinese used a lunisolar calendar, but because the cycles of the Sun
and the Moon
are different, astronomers often prepared new calendars and made observations for that purpose. Astrological divination was also an important part of astronomy. Astronomers took careful note of "guest stars" which suddenly appeared among the fixed stars. They were the first to record a supernova, in the Astrological Annals of the Houhanshu in 185 AD. Also, the supernova that created the Crab Nebula
Crab Nebula
in 1054 is an example of a "guest star" observed by Chinese astronomers, although it was not recorded by their European contemporaries. Ancient astronomical records of phenomena like supernovae and comets are sometimes used in modern astronomical studies. The world's first star catalogue was made by Gan De, a Chinese astronomer, in the 4th century BC. Mesoamerica[edit]

"El Caracol" observatory temple at Chichen Itza, Mexico.

Main articles: Maya calendar
Maya calendar
and Aztec calendar Maya astronomical codices include detailed tables for calculating phases of the Moon, the recurrence of eclipses, and the appearance and disappearance of Venus
as morning and evening star. The Maya based their calendrics in the carefully calculated cycles of the Pleiades, the Sun, the Moon, Venus, Jupiter, Saturn, Mars, and also they had a precise description of the eclipses as depicted in the Dresden Codex, as well as the ecliptic or zodiac, and the Milky Way
Milky Way
was crucial in their Cosmology.[35] A number of important Maya structures are believed to have been oriented toward the extreme risings and settings of Venus. To the ancient Maya, Venus
was the patron of war and many recorded battles are believed to have been timed to the motions of this planet. Mars
is also mentioned in preserved astronomical codices and early mythology.[36] Although the Maya calendar
Maya calendar
was not tied to the Sun, John Teeple has proposed that the Maya calculated the solar year to somewhat greater accuracy than the Gregorian calendar.[37] Both astronomy and an intricate numerological scheme for the measurement of time were vitally important components of Maya religion. Medieval Middle East[edit] Main article: Astronomy
in medieval Islam See also: Maragheh observatory, Ulugh Beg Observatory, and Istanbul observatory of Taqi al-Din

Arabic astrolabe from 1208 AD

The Arabic and the Persian world under Islam
had become highly cultured, and many important works of knowledge from Greek astronomy and Indian astronomy
Indian astronomy
and Persian astronomy were translated into Arabic, used and stored in libraries throughout the area. An important contribution by Islamic astronomers was their emphasis on observational astronomy.[38] This led to the emergence of the first astronomical observatories in the Muslim world
Muslim world
by the early 9th century.[39][40] Zij star catalogues were produced at these observatories. In the 10th century, Abd al-Rahman al-Sufi
Abd al-Rahman al-Sufi
(Azophi) carried out observations on the stars and described their positions, magnitudes, brightness, and colour and drawings for each constellation in his Book of Fixed Stars. He also gave the first descriptions and pictures of "A Little Cloud" now known as the Andromeda Galaxy. He mentions it as lying before the mouth of a Big Fish, an Arabic constellation. This "cloud" was apparently commonly known to the Isfahan astronomers, very probably before 905 AD.[41] The first recorded mention of the Large Magellanic Cloud was also given by al-Sufi.[42][43] In 1006, Ali ibn Ridwan observed SN 1006, the brightest supernova in recorded history, and left a detailed description of the temporary star. In the late 10th century, a huge observatory was built near Tehran, Iran, by the astronomer Abu-Mahmud al-Khujandi who observed a series of meridian transits of the Sun, which allowed him to calculate the tilt of the Earth's axis relative to the Sun. He noted that measurements by earlier (Indian, then Greek) astronomers had found higher values for this angle, possible evidence that the axial tilt is not constant but was in fact decreasing.[44][45] In 11th-century Persia, Omar Khayyám
Omar Khayyám
compiled many tables and performed a reformation of the calendar that was more accurate than the Julian and came close to the Gregorian. Other Muslim advances in astronomy included the collection and correction of previous astronomical data, resolving significant problems in the Ptolemaic model, the development of the universal latitude-independent astrolabe by Arzachel,[46] the invention of numerous other astronomical instruments, Ja'far Muhammad ibn Mūsā ibn Shākir's belief that the heavenly bodies and celestial spheres were subject to the same physical laws as Earth,[47] the first elaborate experiments related to astronomical phenomena, the introduction of exacting empirical observations and experimental techniques,[48] and the introduction of empirical testing by Ibn al-Shatir, who produced the first model of lunar motion which matched physical observations.[49] Natural philosophy
Natural philosophy
(particularly Aristotelian physics) was separated from astronomy by Ibn al-Haytham
Ibn al-Haytham
(Alhazen) in the 11th century, by Ibn al-Shatir in the 14th century,[50] and Qushji in the 15th century, leading to the development of an astronomical physics.[51] Medieval Western Europe[edit] Further information: Science in the Middle Ages

9th century diagram of the positions of the seven planets on 18 March 816.

After the significant contributions of Greek scholars to the development of astronomy, it entered a relatively static era in Western Europe
from the Roman era
Roman era
through the 12th century. This lack of progress has led some astronomers to assert that nothing happened in Western European astronomy during the Middle Ages.[52] Recent investigations, however, have revealed a more complex picture of the study and teaching of astronomy in the period from the 4th to the 16th centuries.[53] Western Europe
entered the Middle Ages with great difficulties that affected the continent's intellectual production. The advanced astronomical treatises of classical antiquity were written in Greek, and with the decline of knowledge of that language, only simplified summaries and practical texts were available for study. The most influential writers to pass on this ancient tradition in Latin
were Macrobius, Pliny, Martianus Capella, and Calcidius.[54] In the 6th century Bishop Gregory of Tours
Gregory of Tours
noted that he had learned his astronomy from reading Martianus Capella, and went on to employ this rudimentary astronomy to describe a method by which monks could determine the time of prayer at night by watching the stars.[55] In the 7th century the English monk Bede of Jarrow
Bede of Jarrow
published an influential text, On the Reckoning of Time, providing churchmen with the practical astronomical knowledge needed to compute the proper date of Easter
using a procedure called the computus. This text remained an important element of the education of clergy from the 7th century until well after the rise of the Universities in the 12th century.[56] The range of surviving ancient Roman writings on astronomy and the teachings of Bede and his followers began to be studied in earnest during the revival of learning sponsored by the emperor Charlemagne.[57] By the 9th century rudimentary techniques for calculating the position of the planets were circulating in Western Europe; medieval scholars recognized their flaws, but texts describing these techniques continued to be copied, reflecting an interest in the motions of the planets and in their astrological significance.[58] Building on this astronomical background, in the 10th century European scholars such as Gerbert of Aurillac
Gerbert of Aurillac
began to travel to Spain and Sicily
to seek out learning which they had heard existed in the Arabic-speaking world. There they first encountered various practical astronomical techniques concerning the calendar and timekeeping, most notably those dealing with the astrolabe. Soon scholars such as Hermann of Reichenau
Hermann of Reichenau
were writing texts in Latin
on the uses and construction of the astrolabe and others, such as Walcher of Malvern, were using the astrolabe to observe the time of eclipses in order to test the validity of computistical tables.[59] By the 12th century, scholars were traveling to Spain and Sicily
to seek out more advanced astronomical and astrological texts, which they translated into Latin
from Arabic and Greek to further enrich the astronomical knowledge of Western Europe. The arrival of these new texts coincided with the rise of the universities in medieval Europe, in which they soon found a home.[60] Reflecting the introduction of astronomy into the universities, John of Sacrobosco wrote a series of influential introductory astronomy textbooks: the Sphere, a Computus, a text on the Quadrant, and another on Calculation.[61] In the 14th century, Nicole Oresme, later bishop of Liseux, showed that neither the scriptural texts nor the physical arguments advanced against the movement of the Earth
were demonstrative and adduced the argument of simplicity for the theory that the earth moves, and not the heavens. However, he concluded "everyone maintains, and I think myself, that the heavens do move and not the earth: For God hath established the world which shall not be moved."[62] In the 15th century, cardinal Nicholas of Cusa
Nicholas of Cusa
suggested in some of his scientific writings that the Earth
revolved around the Sun, and that each star is itself a distant sun. He was not, however, describing a scientifically verifiable theory of the universe. Renaissance

Galileo Galilei
Galileo Galilei
(1564–1642) crafted his own telescope and discovered that our Moon
had craters, that Jupiter
had moons, that the Sun
had spots, and that Venus
had phases like our Moon.

See also: Astronomia nova
Astronomia nova
and Epitome Astronomiae Copernicanae The renaissance came to astronomy with the work of Nicolaus Copernicus, who proposed a heliocentric system, in which the planets revolved around the Sun
and not the Earth. His De revolutionibus provided a full mathematical discussion of his system, using the geometrical techniques that had been traditional in astronomy since before the time of Ptolemy. His work was later defended, expanded upon and modified by Galileo Galilei
Galileo Galilei
and Johannes Kepler. Galileo was considered the father of observational astronomy. He was among the first to use a telescope to observe the sky and after constructing a 20x refractor telescope he discovered the four largest moons of Jupiter
in 1610. This was the first observation of satellites orbiting another planet. He also found that our Moon
had craters and observed (and correctly explained) sunspots. Galileo noted that Venus exhibited a full set of phases resembling lunar phases. Galileo argued that these observations supported the Copernican system and were, to some extent, incompatible with the favored model of the Earth
at the center of the universe.[63] He may have even observed the planet Neptune
in 1612 and 1613, over 200 years before it was discovered, but it is unclear if he was aware of what he was looking at. However, he faced much opposition from the Catholic Church as this "heliocentric theory" went directly against geocentric system that had been referenced in the Bible. He was eventually tried and pled guilty to a "strong suspicion of heresy" which was a lighter sentence then what was proportional during the time. Although this came at some expense: his book was banned, he spent one day in prison, and he was put under house arrest until he died in 1642. [64][65] Uniting physics and astronomy[edit]

Plate with figures illustrating articles on astronomy, from the 1728 Cyclopaedia

Although the motions of celestial bodies had been qualitatively explained in physical terms since Aristotle
introduced celestial movers in his Metaphysics and a fifth element in his On the Heavens, Johannes Kepler
Johannes Kepler
was the first to attempt to derive mathematical predictions of celestial motions from assumed physical causes.[66][67] Combining his physical insights with the unprecedentedly accurate naked-eye observations made by Tycho Brahe,[68][69][70] Kepler discovered the three laws of planetary motion that now carry his name.[71] Isaac Newton
Isaac Newton
developed further ties between physics and astronomy through his law of universal gravitation. Realising that the same force that attracted objects to the surface of the Earth
held the moon in orbit around the Earth, Newton was able to explain – in one theoretical framework – all known gravitational phenomena. In his Philosophiae Naturalis Principia Mathematica, he derived Kepler's laws from first principles. Newton's theoretical developments laid many of the foundations of modern physics. Completing the solar system[edit] Outside of England, Newton's theory took some time to become established. Descartes' theory of vortices held sway in France, and Huygens, Leibniz and Cassini accepted only parts of Newton's system, preferring their own philosophies. It wasn't until Voltaire
published a popular account in 1738 that the tide changed.[72] In 1748, the French Academy of Sciences
French Academy of Sciences
offered a reward for solving the perturbations of Jupiter
and Saturn
which was eventually solved by Euler
and Lagrange. Laplace
completed the theory of the planets towards the end of the century. Edmund Halley
Edmund Halley
succeeded Flamsteed as Astronomer Royal
Astronomer Royal
in England and succeeded in predicting the return in 1758 of the comet that bears his name. Sir William Herschel
Sir William Herschel
found the first new planet, Uranus, to be observed in modern times in 1781. The gap between the planets Mars
and Jupiter
disclosed by the Titius–Bode law
Titius–Bode law
was filled by the discovery of the asteroids Ceres and Pallas in 1801 with many more following. At first, astronomical thought in America was based on Aristotelian philosophy,[73] but interest in the new astronomy began to appear in Almanacs
as early as 1659.[74] Modern astronomy[edit]

surface map of Giovanni Schiaparelli.

Main articles: Astronomy
and Observational astronomy In the 19th century it was discovered that, when sunlight was dispersed, a multitude of spectral lines were observed (regions where there was less or no light). Experiments with hot gases showed that the same lines could be observed in the spectra of gases, specific lines corresponding to unique elements. It was proved that the chemical elements found in the Sun
(chiefly hydrogen and helium) were also found on Earth. During the 20th century spectroscopy (the study of these lines) advanced, especially because of the advent of quantum physics, that was necessary to understand the observations. Although in previous centuries noted astronomers were exclusively male, at the turn of the 20th century women began to play a role in the great discoveries. In this period prior to modern computers, women at the United States Naval Observatory
(USNO), Harvard University, and other astronomy research institutions began to be hired as human "computers," who performed the tedious calculations while scientists performed research requiring more background knowledge. [1] A number of discoveries in this period were originally noted by the women "computers" and reported to their supervisors. For example, at the Harvard Observatory
Henrietta Swan Leavitt
Henrietta Swan Leavitt
discovered the cepheid variable star period-luminosity relation which she further developed into a method of measuring distance outside of our solar system. Annie Jump Cannon, also at Harvard, organized the stellar spectral types according to stellar temperature. In 1847, Maria Mitchell
Maria Mitchell
discovered a comet using a telescope. According to Lewis D. Eigen, Cannon alone, "in only 4 years discovered and catalogued more stars than all the men in history put together."[75] Most of these women received little or no recognition during their lives due to their lower professional standing in the field of astronomy. Although their discoveries and methods are taught in classrooms around the world, few students of astronomy can attribute the works to their authors or have any idea that there were active female astronomers at the end of the 19th century. Cosmology
and the expansion of the universe[edit]

Comparison of CMB
(Cosmic microwave background) results from satellites COBE, WMAP
and Planck documenting a progress in 1989-2013.

Main article: Physical cosmology
Physical cosmology
§ History of study Most of our current knowledge was gained during the 20th century. With the help of the use of photography, fainter objects were observed. Our sun was found to be part of a galaxy made up of more than 1010 stars (10 billion stars). The existence of other galaxies, one of the matters of the great debate, was settled by Edwin Hubble, who identified the Andromeda nebula as a different galaxy, and many others at large distances and receding, moving away from our galaxy. Physical cosmology, a discipline that has a large intersection with astronomy, made huge advances during the 20th century, with the model of the hot big bang heavily supported by the evidence provided by astronomy and physics, such as the redshifts of very distant galaxies and radio sources, the cosmic microwave background radiation, Hubble's law and cosmological abundances of elements. New windows into the Cosmos open[edit]

Hubble Space Telescope.

In the 19th century, scientists began discovering forms of light which were invisible to the naked eye: X-Rays, gamma rays, radio waves, microwaves, ultraviolet radiation, and infrared radiation. This had a major impact on astronomy, spawning the fields of infrared astronomy, radio astronomy, x-ray astronomy and finally gamma-ray astronomy. With the advent of spectroscopy it was proven that other stars were similar to our own sun, but with a range of temperatures, masses and sizes. The existence of our galaxy, the Milky Way, as a separate group of stars was only proven in the 20th century, along with the existence of "external" galaxies, and soon after, the expansion of the universe seen in the recession of most galaxies from us. See also[edit]

Book: Astronomy

portal X-ray astronomy
X-ray astronomy
portal Radio portal

Age of the universe Anthropic principle Archaeoastronomy Big Bang Cosmology History of astrology History of Mars
observation History of supernova observation History of telescopes Hebrew astronomy Letters on Sunspots Metric expansion of space Patronage in Astronomy Physical cosmology Timeline of astronomy List of astronomical instrument makers List of astronomers List of Russian astronomers and astrophysicists List of astronomical observatories


^ Krupp, Edwin C. (2003), Echoes of the Ancient Skies: The Astronomy of Lost Civilizations, Astronomy
Series, Courier Dover Publications, pp. 62–72, ISBN 0-486-42882-6, retrieved 2011-04-12  ^ Nilsson, Martin P. (1920), Primitive Time-Reckoning. A Study in the Origins and Development of the Art of Counting Time among the Primitive and Early Culture
Peoples, Skrifter utgivna av Humanistiska Vetenskapssamfundet i Lund, 1, Lund: C. W. K. Gleerup, OCLC 458893999  ^ Marshak, Alexander. 1972, The Roots of Civilization ^ "The Beginning of Time?". University of Birmingham. 2013.  ^ "'World's oldest calendar' discovered in Scottish field". BBC News. 2013.  ^ "World's Oldest Calendar
Discovered in U.K." Roff Smith, National Geographic. July 15, 2013.  ^ V. Gaffney; et al. (2013), "Time and a Place: A luni-solar 'time-reckoner' from 8th millennium BC Scotland", Internet Archaeology (34), doi:10.11141/ia.34.1, retrieved 7 Oct 2014  ^ "Sonnenobservatorium Goseck". Sonnenobservatorium Goseck.  ^ The Nebra Sky Disc, Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt / Landesmuseum für Vorgeschichte, retrieved 15 October 2014  ^ Nebra Sky Disc, UNESCO: Memory of the World, retrieved 15 October 2014  ^ The Sky Disc of Nebra: Bronze Age
Bronze Age
Sky Disc Deciphered, Deutsche Welle, 2002, retrieved 15 October 2014  ^ "Archaeo-astronomical Site Kokino", UNESCO World Heritage, 2009, retrieved 27 October 2014  ^ " Europe
Before Rome: A Site-by-Site Tour of the Stone, Bronze, and Iron Ages". T. Douglas Price, Oxford University Press. 2013. p. 262.  ^ "The Mayan and Other Ancient Calendars". Geoff Stray, Bloomsbury Publishing USA. 2007. p. 14.  ^ Wilfried Menghin (Hrsg.): Acta Praehistorica et Archaeologica. Unze, Potsdam 32.2000, S. 31-108. ISSN 0341-1184 ^ Pingree (1998) Rochberg (2004) Evans (1998) ^ Pingree (1998) ^ a b Pierre-Yves Bely; Carol Christian; Jean-René Roy. A Question and Answer Guide to Astronomy. Cambridge University Press. p. 197.  ^ Subbarayappa, B. V. (14 September 1989). "Indian astronomy: An historical perspective". In Biswas, S. K.; Mallik, D. C. V.; Vishveshwara, C. V. Cosmic Perspectives. Cambridge University Press. pp. 25–40. ISBN 978-0-521-34354-1.  ^ Neugebauer, O. (1952) Tamil Astronomy: A Study in the History of Astronomy
in India. Osiris, 10:252-276. ^ Joseph (2000). ^ Thurston, H, Early Astronomy. Springer, 1994, p. 178–188. ^ Kelley, David H.; Milone, Eugene F. (2011). Exploring Ancient Skies: A Survey of Ancient and Cultural Astronomy. p. 293.  ^ George G. Joseph (2000), The Crest of the Peacock: Non-European Roots of Mathematics, 2nd edition, p. 408, Penguin Books, London, ISBN 0-691-00659-8 ^ Ramasubramanian, K.; Srinivas, M. D.; Sriram, M. S. (1994). "Modification of the earlier Indian planetary theory by the Kerala astronomers (c. 1500 AD) and the implied heliocentric picture of planetary motion". Current Science. 66: 784–790.  ^ Plato, Timaeus, 33B-36D ^ Aristotle, Metaphysics, 1072a18-1074a32 ^ Pedersen, Early Physics and Astronomy, pp. 55–6 ^ Pedersen, Early Physics and Astronomy, pp. 45–7 ^ Full version at Met Museum ^ Ruggles, C.L.N. (2005), Ancient Astronomy, pages 354–355. ABC-Clio. ISBN 1-85109-477-6. ^ Krupp, E.C. (1988). "Light in the Temples", in C.L.N. Ruggles: Records in Stone: Papers in Memory of Alexander Thom. CUP, 473–499. ISBN 0-521-33381-4. ^ Clement of Alexandria, Stromata, vi. 4 ^ Neugebauer O, Egyptian Planetary Texts, Transactions, American Philosophical Society, Vol. 32, Part 2, 1942, Page 237. ^ Maya Astronomy
Archived 2007-06-06 at the Wayback Machine. ^ A. F. Aveni, Skywatchers of Ancient Mexico, (Austin: Univ. of Texas Pr., 1980), pp. 173–99. ^ A. F. Aveni, Skywatchers of Ancient Mexico, (Austin: Univ. of Texas Pr, 1980), pp. 170–3. ^ Ute Ballay (November 1990), "The Astronomical Manuscripts of Naṣīr al-Dīn Ṭūsī", Arabica, Brill Publishers, 37 (3): 389–392 [389], doi:10.1163/157005890X00050, JSTOR 4057148  ^ Micheau, Francoise, The Scientific Institutions in the Medieval Near East, pp. 992–3 , in Roshdi Rashed & Régis Morelon (1996), Encyclopedia of the History of Arabic Science, pp. 985–1007, Routledge, London and New York. ^ Nas, Peter J (1993), Urban Symbolism, Brill Academic Publishers, p. 350, ISBN 90-04-09855-0  ^ Kepple, George Robert; Sanner, Glen W. (1998), The Night
Sky Observer's Guide, Volume 1, Willmann-Bell, Inc., p. 18, ISBN 0-943396-58-1  ^ "Observatoire de Paris (Abd-al-Rahman Al Sufi)". Retrieved 2007-04-19.  ^ "Observatoire de Paris (LMC)". Retrieved 2007-04-19.  ^ Al-Khujandi, Abu Ma?mud ?amid Ibn Al-Khi?r, Complete Dictionary of Scientific Biography, 2008 ^ O'Connor, John J.; Robertson, Edmund F., "Abu Mahmud Hamid ibn al-Khidr Al-Khujandi", MacTutor History of Mathematics
archive, University of St Andrews . ^ Krebs, Robert E. (2004), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance, Greenwood Press, p. 196, ISBN 0-313-32433-6  ^ Saliba, George (1994). "Early Arabic Critique of Ptolemaic Cosmology: A Ninth-Century Text on the Motion of the Celestial Spheres". Journal for the History of Astronomy. 25: 115–141 [116]. Bibcode:1994JHA....25..115S. doi:10.1177/002182869402500205.  ^ Toby Huff, The Rise of Early Modern Science, p. 326. Cambridge University Press, ISBN 0-521-52994-8. ^ Faruqi, Y. M. (2006). "Contributions of Islamic scholars to the scientific enterprise". International Education Journal. 7 (4): 395–396.  ^ Roshdi Rashed (2007). "The Celestial Kinematics of Ibn al-Haytham", Arabic Sciences and Philosophy 17, p. 7-55. Cambridge University Press. ^ F. Jamil Ragep (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context 14 (1-2), p. 145–163. Cambridge University Press. ^ Henry Smith Williams, The Great Astronomers (New York: Simon and Schuster, 1930), pp. 99–102 describes "the record of astronomical progress" from the Council of Nicea (325 AD) to the time of Copernicus (1543 AD) on four blank pages. ^ Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999) ISBN 0-521-77852-2. ^ Bruce S. Eastwood, Ordering the Heavens: Roman Astronomy
and Cosmology
in the Carolingian Renaissance, (Leiden: Brill, 2007) ISBN 978-90-04-16186-3. ^ Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999), pp. 101–110 ISBN 0-521-77852-2. ^ Faith Wallis, ed. and trans, Bede: The Reckoning of Time, (Liverpool: Liverpool University Press, 2004), pp. xviii-xxxiv ISBN 0-85323-693-3 ^ Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999), pp. 131–164 ISBN 0-521-77852-2. ^ David Juste, "Neither Observation nor Astronomical Tables: An Alternative Way of Computing the Planetary Longitudes in the Early Western Middle Ages," pp. 181–222 in Charles Burnett, Jan P. Hogendijk, Kim Plofker, and Michio Yano, Studies in the Exact Sciences in Honour of David Pingree, (Leiden: Brill, 2004) ^ Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999), pp. 171–187 ISBN 0-521-77852-2. ^ Stephen C. McCluskey, Astronomies and Cultures in Early Medieval Europe, (Cambridge: Cambridge University Press, 1999), pp. 188–192 ISBN 0-521-77852-2. ^ Pedersen, Olaf (1985). "In Quest of Sacrobosco". Journal for the History of Astronomy. 16: 175–221. Bibcode:1985JHA....16..175P.  ^ Nicole Oresme, Le Livre du ciel et du monde, xxv, ed. A. D. Menut and A. J. Denomy, trans. A. D. Menut, (Madison: Univ. of Wisconsin Pr., 1968), quotation at pp. 536–7. ^ Galileo Galilei: The Invention of the Telescope and the Foundation of Modern Astronomy ^ Hirschfeld, Alan (2001). Parallax: The Race to Measure the Cosmos. New York, New York: Henry Holt. ISBN 978-0-8050-7133-7.  ^ Britt, Robert Roy (2009). "Galileo discovered Neptune, new theory claims". MSNBC News. Retrieved 10 July 2009.  ^ Bruce Stephenson, Kepler's physical astronomy, (New York: Springer, 1987), pp. 67–75. ^ "[Kepler's] revolutionary role lay in his successful attempt to solve the problem of uniting astronomy and natural philosophy which had been sought for two thousand years." P. 484 in Wilbur Applebaum, "Keplerian Astronomy
after Kepler: Researches and Problems," History of Science, 34 (1996): 451–504. ^ "We have found Tycho's mature planetary observations to be consistently accurate to within about 1'." P. 30, n. 2 in Gingerich, Owen; Voelkel, James R. (1998). "Tycho Brahe's Copernican Campaign". Journal for the History of Astronomy. 29: 2–34. Bibcode:1998JHA....29....1G. doi:10.1177/002182869802900101.  ^ The average error of Tycho's stellar observations, as recorded in his observational logs, varied from 32.3" to 48.8" for different instruments. Table 4 in Walter G. Wesley, "The Accuracy of Tychho Brahe's Instruments," Journal for the History of Astronomy, 9(1978): 42–53. ^ An error of as much as 3' was introduced into some of the stellar positions published in Tycho's star catalog due to Tycho's application of an erroneous ancient value of parallax and his neglect of refraction. See Dennis Rawlins, "Tycho's 1004 Star
Catalog", DIO 3 (1993), p. 20. ^ Holmes, John, Astronomy
Ancient and Modern (1751) ^ Bryant, Walter W. (1907). A History of Astronomy. p. 53.  ^ Brasch, Frederick (October 1931), "The Royal Society of London and its Influence upon Scientific Thought in the American Colonies", The Scientific Monthly, 33 (4): 338.  ^ Morison, Samuel Eliot (March 1934), "The Harvard School of Astronomy in the Seventeenth Century", The New England Quarterly, 7: 3, doi:10.2307/359264.  ^ Lewis D. Eigen, "Ladies of the Laboratory 2: How in a Few Months Late in the 19th Century One Man Who Had Little Interest in Gender Equality Hired More Female Astronomers than the World Had Ever Known", Scriptamus, December 2009

Historians of astronomy[edit]

Scholars Past. Willy Hartner, Otto Neugebauer, B. L. van der Waerden Scholars Present. Stephen G. Brush, Stephen J. Dick, Owen Gingerich, Bruce Stephenson, Michael Hoskin, Alexander R. Jones, Curtis A. Wilson Astronomer-historians. J. B. J. Delambre, J. L. E. Dreyer, Donald Osterbrock, Carl Sagan, F. Richard Stephenson


Aaboe, Asger. Episodes from the Early History of Astronomy. Springer-Verlag 2001 ISBN 0-387-95136-9 Aveni, Anthony F. Skywatchers of Ancient Mexico. University of Texas Press 1980 ISBN 0-292-77557-1 Dreyer, J. L. E. History of Astronomy
from Thales to Kepler, 2nd edition. Dover Publications 1953 (revised reprint of History of the Planetary Systems from Thales to Kepler, 1906) Eastwood, Bruce. The Revival of Planetary Astronomy
in Carolingian and Post-Carolingian Europe, Variorum Collected Studies Series CS 279 Ashgate 2002 ISBN 0-86078-868-7 Evans, James (1998), The History and Practice of Ancient Astronomy, Oxford University Press, ISBN 0-19-509539-1 . Antoine Gautier, L'âge d'or de l'astronomie ottomane, in L'Astronomie, (Monthly magazine created by Camille Flammarion
Camille Flammarion
in 1882), December 2005, volume 119. Hodson, F. R. (ed.). The Place of Astronomy
in the Ancient World: A Joint Symposium of the Royal Society and the British Academy. Oxford University Press, 1974 ISBN 0-19-725944-8 Hoskin, Michael. The History of Astronomy: A Very Short Introduction. Oxford University Press. ISBN 0-19-280306-9 McCluskey, Stephen C. Astronomies and Cultures in Early Medieval Europe. Cambridge University Press
Cambridge University Press
1998 ISBN 0-521-77852-2 Pannekoek, Anton. A History of Astronomy. Dover Publications 1989 Pedersen, Olaf. Early Physics and Astronomy: A Historical Introduction, revised edition. Cambridge University Press
Cambridge University Press
1993 ISBN 0-521-40899-7 Pingree, David (1998), "Legacies in Astronomy
and Celestial Omens", in Dalley, Stephanie, The Legacy of Mesopotamia, Oxford University Press, pp. 125–137, ISBN 0-19-814946-8 . Rochberg, Francesca (2004), The Heavenly Writing: Divination, Horoscopy, and Astronomy
in Mesopotamian Culture, Cambridge University Press . Stephenson, Bruce. Kepler's Physical Astronomy, Studies in the History of Mathematics
and Physical Sciences, 13. New York: Springer, 1987 ISBN 0-387-96541-6 Walker, Christopher (ed.). Astronomy
before the telescope. British Museum Press 1996 ISBN 0-7141-1746-3

Further reading[edit]

Neugebauer, Otto (1969) [1957], The Exact Sciences in Antiquity (2 ed.), Dover Publications, ISBN 978-0-486-22332-2  Revello, Manuela (2013). "Sole, luna ed eclissi in Omero", in TECHNAI 4, pp. 13-32. Pisa-Roma: Fabrizio Serra editore. 

Refereed Journals[edit]

DIO: The International Journal of Scientific History Journal for the History of Astronomy Journal of Astronomical History and Heritage

External links[edit]

Wikimedia Commons has media related to History of astronomy.

to the Heritage of Astronomy Astronomiae Historia / History of Astronomy
at the Astronomical Institutes of Bonn University. Commission 41 (History of Astronomy) of the International Astronomical Union (IAU) Society for the History of Astronomy Mayan Astronomy Caelum Antiquum: Ancient Astronomy
and Astrology
at LacusCurtius Starry Messenger: Observing the Heavens in the Age of Galileo - an exhibition from the Beinecke Rare Book
and Manuscript Library at Yale University Mesoamerican Archaeoastronomy "The Book
of Instruction on Deviant Planes and Simple Planes" is a manuscript in Arabic that dates back to 1740 and talks about practical astronomy, with diagrams. More information on women astronomers

v t e


Outline History


Astronomer Glossary



Amateur Observational Sidewalk

Celestial subject

Galactic / Extragalactic Local system



Radio Submillimetre Infrared (Far-infrared) Visible-light (optical) Ultraviolet X-ray Gamma-ray

Neutrino Cosmic rays Gravitational radiation High-energy Spherical


Australian Aboriginal Babylonian Chechen (Nakh) Chinese Egyptian Greek Hebrew Indian Inuit Medieval Islamic Serbian Tibetan

Optical telescopes

List Category Extremely large telescope

Gran Telescopio Canarias Hubble Space Telescope Keck Observatory Large Binocular Telescope Southern African Large Telescope Very Large Telescope

Related topics

Archaeoastronomy Astrobiology Astrochemistry Astrophysics Astrology
and astronomy Astrometry Astroparticle physics Photometry Physical cosmology List of astronomers

Muslim Russian Women


Astronomy Cosmology Solar System

Mars Jupiter Uranus Moon

Space Spaceflight Star X-ray astronomy

Category Commons Portal WikiProject

v t e

History of science


Theories and sociology Historiography Pseudoscience

By era

Early cultures Classical Antiquity The Golden Age of Islam Renaissance Scientific Revolution Romanticism

By culture

African Byzantine Medieval European Chinese Indian Medieval Islamic

Natural sciences

Astronomy Biology Botany Chemistry Ecology Evolution Geology Geophysics Paleontology Physics


Algebra Calculus Combinatorics Geometry Logic Probability Statistics Trigonometry

Social sciences

Anthropology Economics Geography Linguistics Political science Psychology Sociology Sustainability


Agricultural science Computer
science Materials science Engineering


Human medicine Veterinary medicine Anatomy Neuroscience Neurology Nutrition Pathology Pharmacy