High-temperature electrolysis
   HOME

TheInfoList



OR:

High-temperature electrolysis (also HTE or steam electrolysis) is a technology for producing
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-to ...
from water at high temperatures.


Efficiency

High temperature electrolysis is more efficient economically than traditional room-temperature
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
because some of the energy is supplied as heat, which is cheaper than electricity, and also because the electrolysis reaction is more efficient at higher temperatures. In fact, at 2500 °C, electrical input is unnecessary because water breaks down to hydrogen and oxygen through
thermolysis Thermal decomposition, or thermolysis, is a chemical decomposition caused by heat. The decomposition temperature of a substance is the temperature at which the substance chemically decomposes. The reaction is usually endothermic as heat is re ...
. Such temperatures are impractical; proposed HTE systems operate between 100 °C and 850 °C. If one assumes that the electricity used comes from a
heat engine In thermodynamics and engineering, a heat engine is a system that converts heat to mechanical energy, which can then be used to do mechanical work. It does this by bringing a working substance from a higher state temperature to a lower stat ...
, it takes 141.86 megajoules (MJ) of heat energy to produce one kg of hydrogen, for the HTE process itself and for the electricity required. At 100 °C, 350 MJ of thermal energy are required (41% efficient). At 850 °C, 225 MJ are required (64% efficient). Above 850 °C, one begins to exceed the capacity of standard chromium steels to resist corrosion, and it's already no easy matter to design and implement an industrial scale chemical process to operate at such a high temperature point.


Materials

The selection of the materials for the electrodes and electrolyte in a solid oxide electrolyser cell is essential. One option being investigated for the process used yttria-stabilized zirconia (YSZ) electrolytes,
Nickel Nickel is a chemical element with symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive but large pieces are slow t ...
(Ni)-
cermet A cermet is a composite material composed of ceramic (cer) and metal (met) materials. A cermet can combine attractive properties of both a ceramic, such as high temperature resistance and hardness, and those of a metal, such as the ability to und ...
steam/Hydrogen electrodes, and mixed Oxide of Lanthanum oxide (La2O3),
Strontium Strontium is the chemical element with the symbol Sr and atomic number 38. An alkaline earth metal, strontium is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is e ...
and
Cobalt Cobalt is a chemical element with the symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, p ...
oxygen electrodes.


Economic potential

Even with HTE, electrolysis is a fairly inefficient way to store energy. Significant conversion losses of energy occur both in the electrolysis process, and in the conversion of the resulting hydrogen back into power. At current hydrocarbon prices, HTE can not compete with
pyrolysis The pyrolysis (or devolatilization) process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere. It involves a change of chemical composition. The word is coined from the Greek-derived elements '' ...
of hydrocarbons as an economical source of hydrogen, which produces carbon dioxide as a by-product. HTE is of interest as a more efficient route to the production of so-called "green" hydrogen, to be used as a
carbon neutral Carbon neutrality is a state of net-zero carbon dioxide emissions. This can be achieved by balancing emissions of carbon dioxide with its removal (often through carbon offsetting) or by eliminating emissions from society (the transition to the " ...
fuel and general energy storage. It may become economical if cheap non-fossil fuel sources of heat (concentrating solar, nuclear, geothermal, waste heat) can be used in conjunction with non-fossil fuel sources of electricity (such as solar, wind, ocean, nuclear). Possible supplies of cheap high-temperature heat for HTE are all nonchemical, including
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
s, concentrating solar thermal collectors, and geothermal sources. HTE has been demonstrated in a laboratory at 108 kilojoules (electric) per gram of hydrogen produced, but not at a commercial scale.


Alternatives

There are hundreds of
thermochemical cycle Thermochemical cycles combine solely heat sources (''thermo'') with ''chemical'' reactions to split water into its hydrogen and oxygen components. The term ''cycle'' is used because aside of water, hydrogen and oxygen, the chemical compounds used in ...
s known to directly convert heat into hydrogen from water. For instance, the thermochemical sulfur-iodine cycle. Since the electricity generation step has a fairly low efficiency and is eliminated, thermochemical production might reach higher efficiencies than HTE. However, large-scale thermochemical production will require significant advances in materials that can withstand high-temperature, high-pressure, highly corrosive environments.


Mars ISRU

High temperature electrolysis with solid oxide electrolyser cells was used to produce 5.37 grams of oxygen per hour on
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
from atmospheric carbon dioxide for the
Mars Oxygen ISRU Experiment The Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) is a technology demonstration on the NASA Mars 2020 rover ''Perseverance'' investigating the production of oxygen on Mars. On April 20, 2021, MOXIE produced oxygen from carbon dio ...
in the
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
Mars 2020 Mars 2020 is a Mars rover mission forming part of NASA's Mars Exploration Program that includes the rover '' Perseverance'', the small robotic, coaxial helicopter '' Ingenuity'', and associated delivery vehicles. Mars 2020 was launched from ...
Perseverance Perseverance may refer to: Behaviour * Psychological resilience * Perseverance of the saints, a Protestant Christian teaching * Assurance (theology) Geography * Perseverance, Queensland, a locality in Australia * Perseverance Island, Seychelles ...
rover, using zirconia electrolysis devices.The Mars Oxygen ISRU Experiment (MOXIE)
PDF. Presentation: MARS 2020 Mission and Instruments". November 6, 2014.


References


U.S. DOE high-temperature electrolysis


Footnotes

{{DEFAULTSORT:High-Temperature Electrolysis Electrolysis Hydrogen production