HTERT
   HOME

TheInfoList



OR:

Telomerase reverse transcriptase (abbreviated to TERT, or hTERT in humans) is a catalytic subunit of the
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
, which, together with the
telomerase RNA component Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. TERC serves as a template for telomere replication (reverse transcription) by t ...
(TERC), comprises the most important unit of the telomerase complex. Telomerases are part of a distinct subgroup of RNA-dependent polymerases. Telomerase lengthens telomeres in DNA strands, thereby allowing senescent
cell Cell most often refers to: * Cell (biology), the functional basic unit of life Cell may also refer to: Locations * Monastic cell, a small room, hut, or cave in which a religious recluse lives, alternatively the small precursor of a monastery ...
s that would otherwise become postmitotic and undergo apoptosis to exceed the Hayflick limit and become potentially immortal, as is often the case with cancerous cells. To be specific, TERT is responsible for catalyzing the addition of
nucleotides Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules with ...
in a TTAGGG sequence to the ends of a
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
's
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
s. This addition of repetitive DNA sequences prevents degradation of the chromosomal ends following multiple rounds of replication. hTERT absence (usually as a result of a
chromosomal A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
) is associated with the disorder
Cri du chat Cri du chat syndrome is a rare genetic disorder due to a partial chromosome deletion on chromosome 5. Its name is a French term ("cat-cry" or " call of the cat") referring to the characteristic cat-like cry of affected children. It was first de ...
.


Function

Telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
is a
ribonucleoprotein Nucleoproteins are proteins conjugated with nucleic acids (either DNA or RNA). Typical nucleoproteins include ribosomes, nucleosomes and viral nucleocapsid proteins. Structures Nucleoproteins tend to be positively charged, facilitating int ...
polymerase that maintains
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
ends by addition of the telomere repeat TTAGGG. The enzyme consists of a protein component with reverse transcriptase activity, encoded by this gene, and an RNA component that serves as a template for the telomere repeat. Telomerase expression plays a role in cellular senescence, as it is normally repressed in postnatal somatic cells, resulting in progressive shortening of telomeres. Studies in mice suggest that telomerase also participates in chromosomal repair, since
de novo synthesis In chemistry, ''de novo'' synthesis () refers to the synthesis of complex molecules from simple molecules such as sugars or amino acids, as opposed to recycling after partial degradation. For example, nucleotides are not needed in the diet as ...
of
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
repeats may occur at double-stranded breaks.
Alternatively spliced Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to code for multiple proteins. In this process, particular exons of a gene may be ...
variants encoding different
isoform A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some iso ...
s of telomerase reverse transcriptase have been identified; the full-length sequence of some variants has not been determined. Alternative splicing at this locus is thought to be one mechanism of regulation of telomerase activity.


Regulation

The hTERT gene, located on chromosome 5, consists of 16 exons and 15
introns An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
spanning 35 kb. The core promoter of hTERT includes 330 base pairs upstream of the translation start site (AUG since it's RNA by using the words "exons" and "introns"), as well as 37 base pairs of exon 2 of the hTERT gene. The hTERT promoter is GC-rich and lacks TATA and CAAT boxes but contains many sites for several
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
giving indication of a high level of regulation by multiple factors in many cellular contexts. Transcription factors that can activate hTERT include many
oncogenes An oncogene is a gene that has the potential to cause cancer. In tumor cells, these genes are often mutated, or expressed at high levels.
(cancer-causing genes) such as
c-Myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' ( MYC), ''l-myc'' ( MYCL), and ''n-myc'' ( MYCN). ''c-myc'' (also sometimes re ...
, Sp1,
HIF-1 Hypoxia-inducible factors (HIFs) are transcription factors that respond to decreases in available oxygen in the cellular environment, or hypoxia. They are only present in parahoxozoan animals. Discovery The HIF transcriptional complex w ...
, AP2, and many more, while many cancer suppressing genes such as
p53 p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often s ...
,
WT1 Wilms tumor protein (WT33) is a protein that in humans is encoded by the ''WT1'' gene on chromosome 11p. Function This gene encodes a transcription factor that contains four zinc finger motifs at the C-terminus and a proline / glutamine-ric ...
, and Menin produce factors that suppress hTERT activity. Another form of up-regulation is through demethylation of
histones In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn ar ...
proximal to the promoter region, imitating the low density of trimethylated histones seen in
embryonic stem cells Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist ...
. This allows for the recruitment of
histone acetyltransferase Histone acetyltransferases (HATs) are enzymes that acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-''N''-acetyllysine. DNA is wrapped around histones, and, by transferring ...
(HAT) to unwind the sequence allowing for transcription of the gene. Telomere deficiency is often linked to aging, cancers and the conditions
dyskeratosis congenita Dyskeratosis congenita (DKC), also known as Zinsser-Engman-Cole syndrome, is a rare progressive congenital disorder with a highly variable phenotype. The entity was classically defined by the triad of abnormal skin pigmentation, nail dystrophy, and ...
(DKC) and
Cri du chat Cri du chat syndrome is a rare genetic disorder due to a partial chromosome deletion on chromosome 5. Its name is a French term ("cat-cry" or " call of the cat") referring to the characteristic cat-like cry of affected children. It was first de ...
. Meanwhile, over-expression of hTERT is often associated with cancers and tumor formation. The regulation of hTERT is extremely important to the maintenance of stem and cancer cells and can be used in multiple ways in the field of
regenerative medicine Regenerative medicine deals with the "process of replacing, engineering or regenerating human or animal cells, tissues or organs to restore or establish normal function". This field holds the promise of engineering damaged tissues and organs by st ...
.


Stem cells

hTERT is often up-regulated in cells that divide rapidly, including both
embryonic stem cell Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre- implantation embryo. Human embryos reach the blastocyst stage 4–5 days post fertilization, at which time they consist ...
s and
adult stem cells Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells (from Greek σωματικóς, ...
. It elongates the telomeres of stem cells, which, as a consequence, increases the lifespan of the stem cells by allowing for indefinite division without shortening of telomeres. Therefore, it is responsible for the self-renewal properties of stem cells. Telomerase are found specifically to target shorter telomere over longer telomere, due to various regulatory mechanisms inside the cells that reduce the
affinity Affinity may refer to: Commerce, finance and law * Affinity (law), kinship by marriage * Affinity analysis, a market research and business management technique * Affinity Credit Union, a Saskatchewan-based credit union * Affinity Equity Par ...
of telomerase to longer telomeres. This preferential affinity maintains a balance within the cell such that the telomeres are of sufficient length for their function and yet, at the same time, not contribute to aberrant telomere elongation. High expression of hTERT is also often used as a landmark for
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
and
multipotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
state of embryonic and adult stem cells. Over-expression of hTERT was found to immortalize certain cell types as well as impart different interesting properties to different stem cells.


Immortalization

hTERT immortalizes various normal cells in culture, thereby endowing the self-renewal properties of stem cells to non-stem cell cultures. There are multiple ways in which immortalization of non-stem cells can be achieved, one of which being via the introduction of hTERT into the cells. Differentiated cells often express hTERC and TP1, a telomerase-associated protein that helps form the telomerase assembly, but does not express hTERT. Hence, hTERT acts as the limiting factor for telomerase activity in differentiated cells. However, with hTERT over-expression, active telomerase can be formed in differentiated cells. This method has been used to immortalize prostate epithelial and stromal-derived cells, which are typically difficult to culture ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology ...
''. hTERT introduction allows ''in vitro'' culture of these cells and available for possible future research. hTERT introduction have an advantage over the use of viral protein for immortalization in that it does not involve the inactivation of
tumor suppressor gene A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or re ...
, which might lead to cancer formation.


Enhancement

Over-expression of hTERT in stem cells changes the properties of the cells. hTERT over-expression increases the stem cell properties of human mesenchymal stem cells. The expression profile of mesenchymal stem cells converges towards embryonic stem cells, suggesting that these cells may have embryonic stem cell-like properties. However, it has been observed that mesenchymal stem cells undergo decreased levels of spontaneous differentiation. This suggests that the differentiation capacity of adult stem cells may be dependent on telomerase activities. Therefore, over-expression of hTERT, which is akin to increasing telomerase activities, may create adult stem cells with a larger capacity for differentiation and hence, a larger capacity for treatment. Increasing the telomerase activities in stem cells gives different effects depending on the intrinsic nature of the different types of stem cells. Hence, not all stem cells will have increased stem-cell properties. For example, research has shown that telomerase can be upregulated in CD34+ Umbilical Cord Blood Cells through hTERT over-expression. The survival of these stem cells was enhanced, although there was no increase in the amount of population doubling.


Clinical significance

Deregulation of telomerase expression in somatic cells may be involved in
oncogenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abno ...
. Genome-wide association studies suggest TERT is a susceptibility gene for development of many cancers, including lung cancer.


Role in cancer

Telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
activity is associated with the number of times a cell can divide playing an important role in the immortality of cell lines, such as cancer cells. The
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
complex acts through the addition of telomeric repeats to the ends of chromosomal DNA. This generates immortal cancer cells. In fact, there is a strong correlation between telomerase activity and malignant
tumors A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
or cancerous cell lines. Not all types of human cancer have increased telomerase activity. 90% of cancers are characterized by increased telomerase activity.
Lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissues of the lung. Lung carcinomas derive from transformed, malign ...
is the most well characterized type of cancer associated with telomerase. There is a lack of substantial telomerase activity in some cell types such as primary human
fibroblasts A fibroblast is a type of biological cell that synthesizes the extracellular matrix and collagen, produces the structural framework ( stroma) for animal tissues, and plays a critical role in wound healing. Fibroblasts are the most common cells ...
, which become
senescent Senescence () or biological aging is the gradual deterioration of functional characteristics in living organisms. The word ''senescence'' can refer to either cellular senescence or to senescence of the whole organism. Organismal senescence inv ...
after about 30–50 population doublings. There is also evidence that telomerase activity is increased in tissues, such as
germ cell Germ or germs may refer to: Science * Germ (microorganism), an informal word for a pathogen * Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually * Germ layer, a primary layer of cells that forms during emb ...
lines, that are self-renewing. Normal
somatic cells A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells compo ...
, on the other hand, do not have detectable telomerase activity. Since the catalytic component of telomerase is its reverse transcriptase, hTERT, and the RNA component hTERC, hTERT is an important
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
to investigate in terms of cancer and
tumorigenesis Carcinogenesis, also called oncogenesis or tumorigenesis, is the formation of a cancer, whereby normal cells are transformed into cancer cells. The process is characterized by changes at the cellular, genetic, and epigenetic levels and abnor ...
. The hTERT gene has been examined for
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
s and their association with the risk of contracting cancer. Over two hundred combinations of hTERT polymorphisms and cancer development have been found. There were several different types of cancer involved, and the strength of the correlation between the polymorphism and developing cancer varied from weak to strong. The regulation of hTERT has also been researched to determine possible mechanisms of telomerase activation in cancer cells. Importantly, mutations in the hTERT promoter were first identified in melanoma and have subsequently been shown to be the most common noncoding mutations in cancer. Glycogen synthase kinase 3 (
GSK3 Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that mediates the addition of phosphate molecules onto serine and threonine amino acid residues. First discovered in 1980 as a regulatory kinase for its namesake, glycogen ...
) seems to be over-expressed in most cancer cells. GSK3 is involved in promoter activation through controlling a network of
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The fun ...
. Leptin is also involved in increasing mRNA expression of hTERT via signal transducer and activation of transcription 3 (
STAT3 Signal transducer and activator of transcription 3 (STAT3) is a transcription factor which in humans is encoded by the ''STAT3'' gene. It is a member of the STAT protein family. Function STAT3 is a member of the STAT protein family. In respons ...
), proposing a mechanism for increased cancer incidence in obese individuals. There are several other regulatory mechanisms that are altered or aberrant in cancer cells, including the Ras subfamily, Ras signaling pathway and other transcriptional regulators. Phosphorylation is also a key process of post-transcriptional modification that regulates mRNA expression and cellular localization. Clearly, there are many regulatory mechanisms of activation and repression of hTERT and telomerase activity in the cell, providing methods of immortalization in cancer cells.


Therapeutic potential

If increased
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
activity is associated with malignancy, then possible cancer treatments could involve inhibiting its catalytic component, hTERT, to reduce the enzyme's activity and cause cell death. Since normal somatic cells do not express TERT, telomerase inhibition in cancer cells can cause senescence and apoptosis without affecting normal human cells. It has been found that Dominant negative mutation, dominant-negative mutants of hTERT could reduce telomerase activity within the cell. This led to apoptosis and cell death in cells with short
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
lengths, a promising result for cancer treatment. Although cells with long telomeres did not experience apoptosis, they developed mortal characteristics and underwent telomere shortening. Telomerase activity has also been found to be inhibited by phytochemicals such as isoprenoids, genistein, curcumin, etc. These chemicals play a role in inhibiting the mTOR pathway via down-regulation of phosphorylation. The mTOR pathway is very important in regulating protein synthesis and it interacts with telomerase to increase its expression. Several other chemicals have been found to inhibit telomerase activity and are currently being tested as potential clinical treatment options such as nucleoside analogues, retinoic acid derivatives, quinolone antibiotics, and Catechin, catechin derivatives. There are also other molecular genetic-based methods of inhibiting telomerase, such as antisense therapy and RNA interference. hTERT peptide fragments have been shown to induce a cytotoxic T-cell reaction against telomerase-positive tumor cells ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology ...
''. The response is mediated by dendritic cells, which can display hTERT-associated antigens on Major histocompatibility complex, MHC class I and II receptors following adenoviral transduction (genetics), transduction of an hTERT plasmid into dendritic cells, which mediate T-cell responses. Dendritic cells are then able to present telomerase-associated antigens even with undetectable amounts of telomerase activity, as long as the hTERT plasmid is present. Immunotherapy against telomerase-positive tumor cells is a promising field in cancer research that has been shown to be effective in ''
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology ...
'' and mouse model studies.


Medical implications


iPS cells

Induced pluripotent stem cells (iPS cells) are somatic (biology), somatic cells that have been reprogrammed into a stem cell-like state by the introduction of four factors (Oct3/4, Sox2, Klf4, and
c-Myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' ( MYC), ''l-myc'' ( MYCL), and ''n-myc'' ( MYCN). ''c-myc'' (also sometimes re ...
). iPS cells have the ability to self-renew indefinitely and contribute to all three germ layers when implanted into a blastocyst or use in teratoma formation. Early development of iPS cell lines were not efficient, as they yielded up to 5% of somatic cells successfully reprogrammed into a stem cell-like state. By using Biological immortality, immortalized somatic (biology), somatic cells (Differentiation (cellular), differentiated cells with hTERT Upregulation, upregulated), iPS cell reprogramming was increased by twentyfold compared to reprogramming using wikt:mortal, mortal cells. The reactivation of hTERT, and subsequently
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
, in human iPS cells has been used as an indication of
pluripotency Pluripotency: These are the cells that can generate into any of the three Germ layers which imply Endodermal, Mesodermal, and Ectodermal cells except tissues like the placenta. According to Latin terms, Pluripotentia means the ability for many thin ...
and reprogramming to an Embryonic stem cell, ES (embryonic stem) cell-like state when using mortal cells. Reprogrammed cells that do not express sufficient hTERT levels enter a G0 phase, quiescent state following a number of replications depending on the length of the telomeres while maintaining stem cell-like abilities to differentiate. Reactivation of TERT activity can be achieved using only three of the four reprogramming factors described by Takahashi and Yamanaka: To be specific, Oct3/4, Sox2 and Klf4 are essential, whereas
c-Myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' ( MYC), ''l-myc'' ( MYCL), and ''n-myc'' ( MYCN). ''c-myc'' (also sometimes re ...
is not. However, this study was done with cells containing endogenous levels of
c-Myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' ( MYC), ''l-myc'' ( MYCL), and ''n-myc'' ( MYCN). ''c-myc'' (also sometimes re ...
that may have been sufficient for reprogramming. Telomere length in healthy adult cells elongates and acquires epigenetic characteristics similar to those of Embryonic stem cell, ES cells when reprogrammed as iPS cells. Some epigenetic characteristics of Embryonic stem cell, ES cells include a low density of tri-methylated
histones In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei. They act as spools around which DNA winds to create structural units called nucleosomes. Nucleosomes in turn ar ...
H3K9 and H4K20 at telomeres, as well as an increased detectable amount of TERT Messenger RNA, transcripts and protein activity. Without the restoration of TERT and associated telomerase proteins, the efficiency of iPS cells would be drastically reduced. iPS cells would also lose the ability to self-renew and would eventually Senescence, senesce. DKC (
dyskeratosis congenita Dyskeratosis congenita (DKC), also known as Zinsser-Engman-Cole syndrome, is a rare progressive congenital disorder with a highly variable phenotype. The entity was classically defined by the triad of abnormal skin pigmentation, nail dystrophy, and ...
) patients are all characterized by the defective maintenance of telomeres leading to problems with stem cell regeneration. iPS cells derived from Dyskeratosis congenita, DKC patients with a heterozygous
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
on the TERT gene display a 50% reduction in telomerase activity compared to wild type iPS cells. Conversely, mutations on the Telomerase RNA component, TERC gene (RNA portion of telomerase complex) can be overcome by up-regulation due to reprogramming as long as the hTERT gene is intact and functional. Lastly, iPS cells generated with Dyskeratosis congenita, DKC cells with a mutated dyskerin (DKC1) gene cannot assemble the hTERT/RNA complex and thus do not have functional telomerase. The functionality and efficiency of a reprogrammed iPS cell is determined by the ability of the cell to re-activate the telomerase complex and elongate its telomeres allowing for self-renewal. hTERT is a major limiting component of the telomerase complex and a deficiency of intact hTERT impedes the activity of telomerase, making iPS cells an unsuitable pathway towards therapy for telomere-deficient disorders.


Androgen therapy

Although the mechanism is not fully understood, exposure of TERT-deficient hematopoietic cells to androgens resulted in an increased level of TERT activity. Cells with a heterozygous TERT mutation, like those in Dyskeratosis congenita, DKC (dyskeratosis congenita) patients, which normally exhibit low baseline levels of TERT, could be restored to normal levels comparable to control cells. TERT mRNA levels are also increased with exposure to androgens. Androgen therapy may become a suitable method for treating circulatory ailments such as bone marrow degeneration and low blood count linked with Dyskeratosis congenita, DKC and other telomerase-deficient conditions.


Aging

As organisms age and cells proliferate, telomeres shorten with each round of replication. Cells restricted to a specific lineage are capable of division only a set number of times, set by the length of telomeres, before they Senescence, senesce. Depletion and uncapping of telomeres has been linked to organ degeneration, Organ failure, failure, and fibrosis due to progenitors' becoming G0 phase, quiescent and unable to Differentiate (cellular), differentiate. Using an ''in vivo'' TERT deficient mouse model, reactivation of the TERT gene in G0 phase, quiescent populations in multiple organs reactivated telomerase and restored the cells’ abilities to Differentiate (cellular), differentiate. Reactivation of TERT down-regulates DNA damage signals associated with Cell cycle checkpoint, cellular mitotic checkpoints allowing for proliferation and elimination of a degenerative phenotype. In another study, introducing the TERT gene into healthy one-year-old mice using an engineered adeno-associated virus led to a 24% increase in lifespan, without any increase in cancer.


Relation to epigenetic clock

Paradoxically, genetic variants in the TERT locus, which are associated with longer leukocyte telomere length, are associated with faster epigenetic aging rates in blood according to a molecular biomarker of aging known as epigenetic clock. Similarly, human TERT expression did not arrest epigenetic aging in human fibroblasts.


Gene therapy

The hTERT
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
has become a main focus for gene therapy involving cancer due to its expression in tumor cells but not Somatic (biology), somatic adult cells. One method is to prevent the Translation (biology), translation of hTERT mRNA through the introduction of siRNA, which are complementary sequences that bind to the mRNA preventing processing of the gene post transcription (genetics), transcription. This method does not eliminate
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
activity, but it does lower telomerase activity and levels of hTERT mRNA seen in the cytoplasm. Higher success rates were seen ''in vitro'' when combining the use of antisense hTERT sequences with the introduction of a tumor-suppressing plasmid by adenovirus infection such as PTEN (gene), PTEN. Another method that has been studied is manipulating the hTERT promoter to induce apoptosis in tumor cells. Plasmid DNA sequences can be manufactured using the hTERT promoter followed by genes encoding for specific proteins. The protein can be a toxin, an apoptotic factor, or a viral protein. Toxins such as diphtheria toxin interfere with cellular processes and eventually induce apoptosis. Apoptotic death factors like FADD (Fas-Associated protein with Death Domain) can be used to force cells expressing hTERT to undergo apoptosis. Viral proteins like viral thymidine kinase can be used for specific targeting of a drug. By introducing a prodrug only activated by the viral enzyme, specific targeting of cells expressing hTERT can be achieved. By using the hTERT promoter, only cells expressing hTERT will be affected and this allows for specific targeting of tumor cells. Aside from cancer therapies, the hTERT gene has been used to promote the growth of hair follicles. A schematic animation for gene therapy is shown as follows.


Interactions

Telomerase reverse transcriptase has been shown to Protein-protein interaction, interact with: * Heat shock protein 90kDa alpha (cytosolic), member A1, HSP90AA1, * Ku70, * Ku80, * MCRS1, * Nucleolin, * PINX1, and * YWHAQ. *PAWR


See also

*
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euka ...
* reverse transcriptase


References


Further reading

* * * * * *


External links


GeneReviews/NCBI/NIH/UW entry on Dyskeratosis Congenita

GeneReviews/NCBI/NIH/UW entry on Pulmonary Fibrosis, Familial
* {{Organisms et al. Telomere-binding proteins Telomere-related proteins