HR 8799
   HOME

TheInfoList



OR:

HR 8799 is a roughly 30 million-year-old
main-sequence In astronomy, the main sequence is a continuous and distinctive band of stars that appears on plots of stellar color versus brightness. These color-magnitude plots are known as Hertzsprung–Russell diagrams after their co-developers, Ejnar ...
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
located away from
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's sur ...
in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the earliest constellation ...
of
Pegasus Pegasus ( grc-gre, Πήγασος, Pḗgasos; la, Pegasus, Pegasos) is one of the best known creatures in Greek mythology. He is a winged divine stallion usually depicted as pure white in color. He was sired by Poseidon, in his role as hor ...
. It has roughly 1.5 times the Sun's mass and 4.9 times its luminosity. It is part of a system that also contains a
debris disk A debris disk (American English), or debris disc (Commonwealth English), is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris di ...
and at least four massive planets. Those planets, along with , were the first
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s whose orbital motion was confirmed by direct imaging. The star is a Gamma Doradus variable: its
luminosity Luminosity is an absolute measure of radiated electromagnetic power (light), the radiant power emitted by a light-emitting object over time. In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a st ...
changes because of non-radial pulsations of its surface. The star is also classified as a Lambda Boötis star, which means its surface layers are depleted in iron peak elements. It is the only known star which is simultaneously a Gamma Doradus variable, a Lambda Boötis type, and a
Vega Vega is the brightest star in the northern constellation of Lyra. It has the Bayer designation α Lyrae, which is Latinised to Alpha Lyrae and abbreviated Alpha Lyr or α Lyr. This star is relatively close at only from the Sun, a ...
-like star (a star with excess infrared emission caused by a
circumstellar disk A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are th ...
).


Location

HR 8799 is a star that is visible to the naked eye. It has a magnitude 5.96 and it is located inside the western edge of the
great square of Pegasus Pegasus is a constellation in the northern sky, named after the winged horse Pegasus in Greek mythology. It was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and is one of the 88 constellations recognised today. ...
almost exactly halfway between Scheat and Markab. The star's name of ''HR 8799'' is its line number in the Bright Star Catalogue.


Stellar properties

The star HR 8799 is a member of the Lambda Boötis ( Boo) class, a group of
peculiar star In astrophysics, chemically peculiar stars (CP stars) are stars with distinctly unusual metal abundances, at least in their surface layers. Classification Chemically peculiar stars are common among hot main-sequence (hydrogen-burning) stars. Thes ...
s with an unusual lack of “metals” (elements heavier than hydrogen and helium) in their upper atmosphere. Because of this special status, stars like HR 8799 have a very complex spectral type. The luminosity profile of the Balmer lines in the star's spectrum, as well as the star's
effective temperature The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
, best match the typical properties of an F0 V star. However, the strength of the
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
 II K
absorption line A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
and the other metallic lines are more like those of an A5 V star. The star's spectral type is therefore written as . Age determination of this star shows some variation based on the method used. Statistically, for stars hosting a debris disk, the luminosity of this star suggests an age of about 20–150 million years. Comparison with stars having similar motion through space gives an age in the range 30–160 million years. Given the star's position on the
Hertzsprung–Russell diagram The Hertzsprung–Russell diagram, abbreviated as H–R diagram, HR diagram or HRD, is a scatter plot of stars showing the relationship between the stars' absolute magnitudes or luminosities versus their stellar classifications or effective te ...
of luminosity versus temperature, it has an estimated age in the range of 30–1,128 million years.  Boötis stars like this are generally young, with a mean age of a billion years. More accurately,
asteroseismology Asteroseismology or astroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the speed of sound, which in turn depends on local temperatur ...
also suggests an age of approximately a billion years. However, this is disputed because it would make the planets become brown dwarfs to fit into the cooling models. Brown dwarfs would not be stable in such a configuration. The best accepted value for an age of HR 8799 is 30 million years, consistent with being a member of the
Columba association In astronomy, the Columba association is a nearby Myr old stellar association. The association is named after the constellation Columba which contains many of the stars first recognized in the group. Special interest Stars in young association ...
co-moving group of stars. Earlier analysis of the star's spectrum reveals that it has a slight overabundance of
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
compared to the Sun (by approximately 30% and 10% respectively). While some Lambda Boötis stars have
sulfur Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formul ...
abundances similar to that of the Sun, this is not the case for HR 8799; the sulfur abundance is only around 35% of the solar level. The star is also poor in elements heavier than
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
: for example, the iron abundance is only 28% of the solar iron abundance. Asteroseismic observations of other pulsating Lambda Boötis stars suggest that the peculiar abundance patterns of these stars are confined to the surface only: the bulk composition is likely more normal. This may indicate that the observed element abundances are the result of the accretion of metal-poor gas from the environment around the star. In 2020, spectral analysis utilizing multiple data sources have detected an inconsistency in prior data and concluded the star carbon and oxygen abundances are the same or slightly higher than solar. The iron abundance was updated to 30% of solar value. Astroseismic analysis using spectroscopic data indicates that the rotational inclination of the star is constrained to be greater than or approximately equal to 40°. This contrasts with the planets' orbital inclinations, which are in roughly the same plane at an angle of about . Hence, there may be an unexplained misalignment between the rotation of the star and the orbits of its planets. Observation of this star with the
Chandra X-ray Observatory The Chandra X-ray Observatory (CXO), previously known as the Advanced X-ray Astrophysics Facility (AXAF), is a Flagship-class space telescope launched aboard the during STS-93 by NASA on July 23, 1999. Chandra is sensitive to X-ray sources ...
indicates that it has a weak level of magnetic activity, but the X-ray activity is much higher than that of an A‑type star like
Altair Altair is the brightest star in the constellation of Aquila and the twelfth-brightest star in the night sky. It has the Bayer designation Alpha Aquilae, which is Latinised from α Aquilae and abbreviated Alpha Aql o ...
. This suggests that the internal structure of the star more closely resembles that of an F0 star. The temperature of the
stellar corona A corona ( coronas or coronae) is the outermost layer of a star's atmosphere. It consists of plasma. The Sun's corona lies above the chromosphere and extends millions of kilometres into outer space. It is most easily seen during a total sola ...
is about 3.0 million  K.


Planetary system

On 13 November 2008, Christian Marois of the National Research Council of Canada's Herzberg Institute of Astrophysics and his team announced they had directly observed three
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a youn ...
orbiting the star with the Keck and Gemini telescopes in
Hawaii Hawaii ( ; haw, Hawaii or ) is a state in the Western United States, located in the Pacific Ocean about from the U.S. mainland. It is the only U.S. state outside North America, the only state that is an archipelago, and the only stat ...
, in both cases employing
adaptive optics Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical tele ...
to make observations in the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
. A
precovery In astronomy, precovery (short for pre-discovery recovery) is the process of finding the image of an object in images or photographic plates predating its discovery, typically for the purpose of calculating a more accurate orbit. This happens mos ...
observation of the outer 3 planets was later found in infrared images obtained in 1998 by the
Hubble Space Telescope The Hubble Space Telescope (often referred to as HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the first space telescope, but it is one of the largest and most vers ...
's
NICMOS The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a scientific instrument for infrared astronomy, installed on the Hubble Space Telescope (HST), operating from 1997 to 1999, and from 2002 to 2008. Images produced by NICMOS contain ...
instrument, after a newly developed image-processing technique was applied. Further observations in 2009–2010 revealed the fourth giant planet orbiting inside the first three planets at a
projected separation This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outsi ...
just less than 15 , which has been confirmed by multiple studies. The outer planet orbits inside a dusty disk like the Solar
Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 tim ...
. It is one of the most massive disks known around any star within 300 light years of Earth, and there is room in the inner system for
terrestrial planet A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, ...
s. There is an additional debris disk just inside the orbit of the innermost planet. The orbital radii of planets  e, d, c, and b are 2–3 times those of
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
,
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
,
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus ( Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars), grandfather of Zeus (Jupiter) and father of ...
, and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
's orbits, respectively. Because of the
inverse square law In science, an inverse-square law is any scientific law stating that a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cause for this can be unders ...
relating
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
intensity to distance from the source, comparable radiation intensities are present at distances farther from HR 8799 than from the Sun, the upshot being that corresponding planets in the solar and HR 8799 systems receive similar amounts of stellar radiation. These objects are near the upper mass limit for classification as planets; if they exceeded 13  Jupiter masses, they would be capable of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
fusion in their interiors and thus qualify as
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s under the definition of these terms used by the IAU's Working Group on Extrasolar Planets. If the mass estimates are correct, the HR 8799 system is the first multiple-planet extrasolar system to be directly imaged. The orbital motion of the planets is in an anticlockwise direction and was confirmed via multiple observations dating back to 1998. The system is more likely to be stable if the planets e, d, and c are in a 4:2:1 resonance, which would imply that the orbit of the planet d has an eccentricity exceeding 0.04 in order to match the observational constraints. Planetary systems with the best-fit masses from evolutionary models would be stable if the outer three planets are in a 1:2:4 
orbital resonance In celestial mechanics, orbital resonance occurs when orbiting bodies exert regular, periodic gravitational influence on each other, usually because their orbital periods are related by a ratio of small integers. Most commonly, this relationsh ...
(similar to the Laplace resonance between Jupiter's inner three
Galilean satellites The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupiter ...
: Io,
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Clif ...
, and Ganymede as well as three of the planets in the Gliese 876 system). However, it is disputed if planet b is in resonance with the other 3 planets. According to dynamical simulations, the HR 8799 planetary system may be even an extrasolar system with multiple resonance 1:2:4:8. The 4 young planets are still glowing red hot from the heat of their formation, and are larger than Jupiter and over time they will cool and shrink to the sizes of 0.8–1.0 Jupiter radii. The broadband photometry of planets b, c and d has shown that there may be significant clouds in their atmospheres, while the infrared spectroscopy of planets b and c points to non-equilibrium / chemistry. Near-infrared observations with the
Project 1640 Project 1640 is a high contrast imaging project at Palomar Observatory. It seeks to image brown dwarfs and Jupiter-sized planets around nearby stars. Rebecca Oppenheimer, associate curator and chair of the Astrophysics Department at the American Mus ...
integral field spectrograph on the Palomar Observatory have shown that compositions between the four planets vary significantly. This is a surprise since the planets presumably formed in the same way from the same disk and have similar luminosities.


Planet spectra

A number of studies have used the spectra of HR 8799's planets to determine their chemical compositions and constrain their formation scenarios. The first spectroscopic study of planet b (performed at near-infrared wavelengths) detected strong water absorption and hints of methane absorption. Subsequently, weak methane and carbon monoxide absorption in this planet's atmosphere was also detected, indicating efficient vertical mixing of the atmosphere and a disequilibrium / ratio at the photosphere. Compared to models of planetary atmospheres, this first spectrum of planet b is best matched by a model of enhanced
metallicity In astronomy, metallicity is the abundance of elements present in an object that are heavier than hydrogen and helium. Most of the normal physical matter in the Universe is either hydrogen or helium, and astronomers use the word ''"metals"'' as ...
(about 10 times the metallicity of the Sun), which may support the notion that this planet formed through core-accretion. The first simultaneous spectra of all four known planets in the HR 8799 system were obtained in 2012 using the Project 1640 instrument at Palomar Observatory. The near-infrared spectra from this instrument confirmed the red colors of all four planets and are best matched by models of planetary atmospheres that include clouds. Though these spectra do not directly correspond to any known astrophysical objects, some of the planet spectra demonstrate similarities with L- and T-type
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
s and the night-side spectrum of Saturn. The implications of the simultaneous spectra of all four planets obtained with Project 1640 are summarized as follows: Planet b contains ammonia and/or acetylene as well as carbon dioxide, but has little methane; planet c contains ammonia, perhaps some acetylene but neither carbon dioxide nor substantial methane; planet d contains acetylene, methane, and carbon dioxide but ammonia is not definitively detected; planet e contains methane and acetylene but no ammonia or carbon dioxide. The spectrum of planet e is similar to a reddened spectrum of Saturn. Moderate-resolution near-infrared spectroscopy, obtained with the Keck telescope, definitively detected carbon monoxide and water absorption lines in the atmosphere of planet c. The carbon-to-oxygen ratio, which is thought to be a good indicator of the formation history for giant planets, for planet c was measured to be slightly greater than that of the host star HR 8799. The enhanced carbon-to-oxygen ratio and depleted levels of carbon and oxygen in planet c favor a history in which the planet formed through core accretion. However, it is important to note that conclusions about the formation history of a planet based solely on its composition may be inaccurate if the planet has undergone significant migration, chemical evolution, or core dredging. Later, in November 2018, researchers confirmed the existence of water and the absence of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
in the atmosphere of using high-resolution spectroscopy and near-infrared adaptive optics ( NIRSPAO) at the Keck Observatory. The red colors of the planets may be explained by the presence of iron and silicate atmospheric clouds, while their low surface gravities might explain the strong disequilibrium concentrations of carbon monoxide and the lack of strong methane absorption.


Debris disk

In January 2009 the
Spitzer Space Telescope The Spitzer Space Telescope, formerly the Space Infrared Telescope Facility (SIRTF), was an infrared space telescope launched in 2003. Operations ended on 30 January 2020. Spitzer was the third space telescope dedicated to infrared astronomy, ...
obtained images of the debris disk around HR 8799. Three components of the debris disk were distinguished: # Warm dust ( ≈ 150 K) orbiting within the innermost planet (e). The inner and outer edges of this belt are close to 4:1 and 2:1 resonances with the planet. # A broad zone of cold dust ( ≈ 45 K) with a sharp inner edge orbiting just outside the outermost planet (b). The inner edge of this belt is approximately in 3:2 resonance with said planet, similar to
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 time ...
and the
Kuiper belt The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 tim ...
. # A dramatic halo of small grains originating in the cold dust component. The halo is unusual and implies a high level of dynamic activity which is likely due to gravitational stirring by the massive planets. The Spitzer team says that collisions are likely occurring among bodies similar to those in the Kuiper Belt and that the three large planets may not yet have settled into their final, stable orbits. In the photo, the bright, yellow-white portions of the dust cloud come from the outer cold disk. The huge extended dust halo, seen in orange-red, has a diameter of ≈ 2,000 . The diameter of Pluto's orbit (≈ 80 ) is shown for reference as a dot in the centre. This disk is so thick that it threatens the young system's stability.


Vortex Coronagraph: Testbed for high-contrast imaging technology

Up until the year 2010,
telescopes A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observ ...
could only directly image exoplanets under exceptional circumstances. Specifically, it is easier to obtain images when the planet is especially large (considerably larger than
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousand ...
), widely separated from its parent star, and hot so that it emits intense infrared radiation. However, in 2010 a team from
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
s
Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a Federally funded research and development centers, federally funded research and development center and NASA field center in the City of La Cañada Flintridge, California, La Cañada Flintridge, California ...
demonstrated that a
vortex coronagraph A vortex coronagraph is a type of optical instrument for telescopes that blocks out the glare of bright objects (like stars) so that smaller objects near them can be seen. For example, extrasolar planets near their host star as seen from Earth or ...
could enable small telescopes to directly image planets. They did this by imaging the previously imaged HR 8799 planets using just a 1.5 m portion of the
Hale Telescope The Hale Telescope is a , 3.3 reflecting telescope at the Palomar Observatory in San Diego County, California, US, named after astronomer George Ellery Hale. With funding from the Rockefeller Foundation in 1928, he orchestrated the planning, de ...
.


NICMOS images

In 2009, an old
NICMOS The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) is a scientific instrument for infrared astronomy, installed on the Hubble Space Telescope (HST), operating from 1997 to 1999, and from 2002 to 2008. Images produced by NICMOS contain ...
image was processed to show a predicted exoplanet around HR 8799. In 2011, three further
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s were rendered viewable in a NICMOS image taken in 1998, using advanced data processing. The image allows the planets' orbits to be better characterised, since they take many decades to orbit their host star.


Search for radio emissions

Starting in 2010, astronomers searched for radio emissions from the
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
s orbiting HR 8799 using the radio telescope at
Arecibo Observatory The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science ...
. Despite the large masses, warm temperatures, and
brown dwarf Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen ( 1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most ...
-like luminosities, they failed to detect any emissions at 5 GHz down to a flux density detection threshold of 1.0  mJy.


See also

* List of exoplanets * Direct imaging of extrasolar planets


Notes


References


External links

{{DEFAULTSORT:HR 8799 A-type main-sequence stars Gamma Doradus variables Pegasus (constellation) 218396 114189 8799 Pegasi, V342 Planetary systems with four confirmed planets Lambda Boötis stars Circumstellar disks Durchmusterung objects