HAK5
   HOME

TheInfoList



OR:

High Affinity K+ transporter HAK5 is a
transport protein A transport protein (variously referred to as a transmembrane pump, transporter, escort protein, acid transport protein, cation transport protein, or anion transport protein) is a protein that serves the function of moving other materials within ...
found on the cell surface membrane of plants under conditions of potassium deprivation. It is believed to act as a
symporter A symporter is an integral membrane protein that is involved in the transport of two (or more) different molecules across the cell membrane in the same direction. The symporter works in the plasma membrane and molecules are transported across the ...
for
protons A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron m ...
and the
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
ion, K+. Firstly discovered in barley, receiving the name of HvHAK1, it was soon after identified in the model plant Arabidopsis thaliana and named HAK5. These transporters belongs to the subgroup I of the KT-HAK-KUP family of plant proteins with obvious homology with both bacterial and fungal transport systems, which experienced a major diversification following land conquest. KT-HAK-KUP transporters are one of four different types of K+ transporter within the cell, but are unique as they do not have a putative pore forming domain like the other three; Shaker channels, KCO channels, HKT transporters. It is activated when the plant is situated in low soil with low potassium concentration, and has been shown to be located in higher concentration in the epidermis and vasculature of K+ deprived plants. By turning on, it increases the plants affinity (uptake) of
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
. Potassium plays a vital role in the plants growth, reproduction, immunity, ion homeostasis, and
osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region ...
, which ensures the plants survival. It is the highest cationic molecule within the plant, accounting for 10% of the plants dry weight, which makes its uptake into the plant important. Each plant species has its own HAK5 transporter that is specific to that species and has different levels of affinity to K+. To operate and activate the HAK5 transporter, the external concentration of K+ must be lower than 10μM and up to 200μM. In Arabidopsis plants, when external potassium concentration is lower than 10μM, it is only HAK5 that is involved with the uptake of K+, then between 10 and 200μM both HAK5 and
AKT1 RAC(Rho family)-alpha serine/threonine-protein kinase is an enzyme that in humans is encoded by the ''AKT1'' gene. This enzyme belongs to the AKT subfamily of serine/threonine kinases that contain SH2 (Src homology 2-like) protein domains. It ...
are involved with the uptake of K+. HAK5 is coupled with CBL9/CIPK23 kinase's although the mechanism behind this has not yet been understood.


Interaction

The High Affinity K+ transporter interacts with the following proteins * ILK1 * CBL9- CIPK23 *
AKT1 RAC(Rho family)-alpha serine/threonine-protein kinase is an enzyme that in humans is encoded by the ''AKT1'' gene. This enzyme belongs to the AKT subfamily of serine/threonine kinases that contain SH2 (Src homology 2-like) protein domains. It ...


Activation

CIPK23 acts to phosphorylate HAK5, the phosphorylation is what activates the HAK5 to take up K+. HAK5 is positively controlled by CIPK23- CBL1-9 complexes, Ca2+ binds with CBL1-9, which then combines with CIPK23 to form a CIPK23/CBL complex, the complex then initiates the up-regulation of the HAK5 protein transporter by phosphorylating the N- terminus of the HAK5. This mechanism acts in a similar way in which ATK1,(another K+ transporter) is activated, however the only difference is that ATK1 only interacts with CBL1 and CBL9, whereas HAK5 interacts with CBL1, CBL8, CBL9 and CBL10.


Functions

High Affinity K+ transporter HAK5 effects multiple functions of the plant when in low potassium concentrations these are; *
Osmosis Osmosis (, ) is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential (region ...
* Ion Homeostasis *
Immune Response An immune response is a reaction which occurs within an organism for the purpose of defending against foreign invaders. These invaders include a wide variety of different microorganisms including viruses, bacteria, parasites, and fungi which coul ...
* Growth


Osmosis

Higher levels of potassium in the roots creates a greater amount of
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
in the leaves by helping to control osmosis occurring throughout the cells. By controlling potassium, the HAK5 potassium transporter plays this important role in osmosis, and creates large influxes of water molecules to the plant to ensure its survival. By increasing the affinity of potassium uptake within the plant, it lowers the concentration of water within the cell. This increases the concentration of solute outside, creating a hypotonic solute. The water will then move into the plant cell via osmosis.


Ion homeostasis

A cell membrane consists of many transport proteins that allow for ion transport, as ions can not simply pass through the gradient due to their charge. High Affinity K+ transporter HAK5, is important for the regulation of K+ ions within the cell. When there is a lack of K+, the HAK5 transporter is activated to uptake K+. This occurs when there is high salinity within the soil, which often happens within the crop industry. If the soil has a high
salinity Salinity () is the saltiness or amount of salt (chemistry), salt dissolved in a body of water, called saline water (see also soil salinity). It is usually measured in g/L or g/kg (grams of salt per liter/kilogram of water; the latter is dimensio ...
content, this means Na+ from NaCl competes with K+ for uptake because they are similar ions and use the same transporters. However, K+ accounts for the activation of over 50 enzymes, which Na+ cannot be a substitute. With HAK5 transporters, this competition is lowered, as there is a specific transporter for K+ that insures its uptake. The transporter for K+ ensures that the K+ and Na+ maintain homeostasis in the plant. K+ is required for environmental changes like putting the plant into a higher salinity situation. K+ ensures plants are able to adapt to these changes. The only way in which they are able to obtain this K+ whilst in high salinity conditions is through HAK5 transporters regulating the amount because it is only turned on when there is a low concentration of K+ in the soil.


Immune response

HAK5 is linked to disease prevention because if there is a lack of K+ or nutrients within a plant or cell, bacterial growth is promoted. K+ is important for the generation of PAMPs (pathogen-associated molecular patterns) recognition, which is involved in the innate immune system for living cells. PAMPs are the main molecules that run the innate immune system. They consist of either
glycan The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate ...
s or gylcoconjugates, and they pair with
pattern recognition receptor Pattern recognition receptors (PRRs) play a crucial role in the proper function of the innate immune system. PRRs are germline-encoded host sensors, which detect molecules typical for the pathogens. They are proteins expressed, mainly, by cells of ...
s (PRR) to initiate an immune response. They send signals to the host cells to show there is a pathogen present. One of the best PRR is FLS2; it binds to flg22 (
flagellin Flagellin is a globular protein that arranges itself in a hollow cylinder to form the filament in a bacterial flagellum. It has a mass of about 30,000 to 60,000 daltons. Flagellin is the principal component of bacterial flagella, and is pres ...
), and after just minutes, signaling responses such as kinase cascades, production of
reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS), and extracellular alkalization are stimulated. During PAMPs, ion transport across the
plasma membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
is important. One particular important ion is K+. The loss of K+ promotes the activation of PAMPs. The loss of anions help the growth of
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
and the PAMPs system works to fight against foreign pathogens such as bacteria. PRRs recognize PAMPs when there is an infection within the cell. During extreme limitations to K+, HAK5 is the only transporter. When PAMPs are triggered a large number of K+ are introduced to the cell, which signals a downstream immune response. In animal cells the toll-like receptor TLR4 binds the bacterial PAMP LPS (
lipopolysaccharide Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O- antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the out ...
) and induces K+ efflux through the MaxiK K+ channel, activating signal cascades and release of the pro-inflammatory tumor necrosis factor-α HAK5 works alongside other kinase's to help with the immune response within a cell. The main kinase that works with this transporter is Intergrin- Linked Kinase 1 (
ILK Integrin-linked kinase is an enzyme that in humans is encoded by the ILK gene involved with integrin-mediated signal transduction. Mutations in ''ILK'' are associated with cardiomyopathies. It is a 59kDa protein originally identified in a yeast-two ...
1). ILK1 works to increase the amount of HAK5 transporters on the plasma membrane during abiotic stress which increases the influx of K+. ILK1 has also been shown to phosphorylate the N-terminal of HAK5, which contributes to plant growth. The
phosphorylation In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, wh ...
helps to aid in the regulation of the HAK5, as well as other complexes such as CBL1 and CIPK23. Those complexes help to enhance HAK5 transport of K+, although the true mechanism is currently unknown.


Growth

HAK5 is important for the plant's growth, especially when the plant is in a low potassium soil environment. This is because in this situation the HAK5 transporter is turned on and has a high affinity for the uptake of potassium, which is important for the growth of the plant. Bpth macro and micro-nutrients are important in enzyme activation,
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
and protein synthesis- all things that are important to ensure growth of the plant. Potassium is being looked at, as being a new fertilizer for plants in areas that soil is low in potassium. It has been shown to helps increase water consumption and nitrogen use in warm season cereals. By using a potassium fertilizer, the use of the HAK5 transporter will decrease because it is only activated at low levels. However, by adding potassium to the soil, nutrient management within the soil will be better balanced.


References

{{reflist, 30em


External links


Pubmed


* Uniprot
maizerice


Transport proteins