Gunn effect
   HOME

TheInfoList



OR:

A Gunn diode, also known as a transferred electron device (TED), is a form of
diode A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diod ...
, a two-terminal
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
electronic component, with negative resistance, used in high-frequency
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
. It is based on the "Gunn effect" discovered in 1962 by physicist
J. B. Gunn John Battiscombe "J. B." Gunn (13 May 1928 – 2 December 2008), known as Ian or Iain, was a British physicist, who spent most of his career in the United States. He discovered the Gunn effect, which led to the invention of the Gunn diode, t ...
. Its largest use is in
electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillators convert direct current (DC) from a power supply to an alternating ...
s to generate
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
s, in applications such as radar speed guns, microwave relay data link transmitters, and automatic door openers. Its internal construction is unlike other diodes in that it consists only of N-doped
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
material, whereas most diodes consist of both P and N-doped regions. It therefore conducts in both directions and cannot
rectify ''Rectify'' is an American television drama series exploring the life of a man after he is released from prison after nearly 20 years on death row following a wrongful conviction. It was created by Ray McKinnon and is the first original series f ...
alternating current like other diodes, which is why some sources do not use the term ''diode'' but prefer TED. In the Gunn diode, three regions exist: two of those are heavily N-doped on each terminal, with a thin layer of lightly n-doped material between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. If the voltage is increased, the current through the layer will first increase, but eventually, at higher field values, the conductive properties of the middle layer are altered, increasing its resistivity, and causing the current to fall. This means a Gunn diode has a region of negative differential resistance in its
current–voltage characteristic A current–voltage characteristic or I–V curve (current–voltage curve) is a relationship, typically represented as a chart or graph, between the electric current through a circuit, device, or material, and the corresponding voltage, or ...
curve, in which an increase of applied voltage, causes a decrease in current. This property allows it to amplify, functioning as a radio frequency amplifier, or to become unstable and oscillate when it is biased with a DC voltage.


Gunn diode oscillators

The negative differential resistance, combined with the timing properties of the intermediate layer, is responsible for the diode's largest use: in
electronic oscillator An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave or a triangle wave. Oscillators convert direct current (DC) from a power supply to an alternating ...
s at
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
frequencies and above. A microwave oscillator can be created simply by applying a DC voltage to bias the device into its negative resistance region. In effect, the negative differential resistance of the diode cancels the positive resistance of the load circuit, thus creating a circuit with zero differential resistance, which will produce spontaneous oscillations. The oscillation
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
is determined partly by the properties of the middle diode layer, but can be tuned by external factors. In practical oscillators, an electronic
resonator A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
is usually added to control frequency, in the form of a
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
,
microwave cavity A microwave cavity or ''radio frequency (RF) cavity'' is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave region of the spectrum. The structure is eithe ...
or
YIG sphere Yttrium iron garnet spheres (YIG spheres) serve as magnetically tunable filters and resonators for microwave frequencies. YIG filters are used for their high Q factors, typically between 100 and 200. A sphere made from a single crystal of sy ...
. The diode is usually mounted inside the cavity. The diode cancels the loss resistance of the resonator, so it produces oscillations at its
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscilla ...
. The frequency can be tuned mechanically, by adjusting the size of the cavity, or in case of YIG spheres by changing the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. Gunn diodes are used to build oscillators in the 10
GHz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one he ...
to high ( THz) frequency range.
Gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated c ...
Gunn diodes are made for frequencies up to 200 GHz,
gallium nitride Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4 eV affords ...
materials can reach up to 3 terahertz.


History

The Gunn diode is based on the Gunn effect, and both are named for physicist
J. B. Gunn John Battiscombe "J. B." Gunn (13 May 1928 – 2 December 2008), known as Ian or Iain, was a British physicist, who spent most of his career in the United States. He discovered the Gunn effect, which led to the invention of the Gunn diode, t ...
. At IBM in 1962, he discovered the effect because he refused to accept inconsistent experimental results in gallium arsenide as "noise", and determined the cause. Alan Chynoweth, of
Bell Telephone Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
, showed in June 1965 that only a transferred-electron mechanism could explain the experimental results. It was realized that the oscillations he detected were explained by the Ridley–Watkins–Hilsum theory, named for British physicists
Brian Ridley Brian Kidd Ridley (born 2 March 1931) is a British solid-state physicist specialising in semiconductor theory. He is an emeritus professor at the University of Essex. Education Ridley was educated at the University of Durham. He received a ...
, Tom Watkins and Cyril Hilsum who in scientific papers in 1961 showed that bulk semiconductors could display '' negative resistance'', meaning that increasing the applied voltage causes the current to ''decrease''. The Gunn effect, and its relation to the Watkins–Ridley–Hilsum effect entered electronics literature in the early 1970s, e.g. in books on transferred electron devices and, more recently on nonlinear wave methods for charge transport.


How it works

The
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called '' band gaps'' or ...
of some
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
materials, including
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated c ...
(GaAs), have another energy band or sub-band in addition to the valence and
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
s which are usually used in
semiconductor devices A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity l ...
. This third band is at a higher energy than the normal conduction band and is empty until energy is supplied to promote electrons to it. The energy comes from the kinetic energy of ballistic electrons, that is, electrons in the conduction band but moving with sufficient kinetic energy such that they are able to reach the third band. These electrons either start out below the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
and are given a sufficiently long mean free path to acquire the needed energy by applying a strong electric field, or they are injected by a cathode with the right energy. With forward voltage applied, the Fermi level in the cathode moves into the third band, and reflections of ballistic electrons starting around the Fermi level are minimized by matching the density of states and using the additional interface layers to let the reflected waves interfere destructively. In GaAs the effective mass of the electrons in the third band is higher than those in the usual conduction band, so the
mobility Mobility may refer to: Social sciences and humanities * Economic mobility, ability of individuals or families to improve their economic status * Geographic mobility, the measure of how populations and goods move over time * Mobilities, a conte ...
or drift velocity of the electrons in that band is lower. As the forward voltage increases, more and more electrons can reach the third band, causing them to move slower, and current through the device decreases. This creates a region of negative differential resistance in the voltage/current relationship. When a high enough potential is applied to the diode, the charge carrier density along the cathode becomes unstable, and will develop small segments of low conductivity, with the rest of the cathode having high conductivity. Most of the cathode voltage drop will occur across the segment, so it will have a high electric field. Under the influence of this electric field it will move along the cathode to the anode. It is not possible to balance the population in both bands, so there will always be thin slices of high field strength in a general background of low field strength. So in practice, with a small increase in forward voltage, a low conductivity segment is created at the cathode, resistance increases, the segment moves along the bar to the anode, and when it reaches the anode it is absorbed and a new segment is created at the cathode to keep the total voltage constant. If the voltage is lowered, any existing slice is quenched and resistance decreases again. The laboratory methods that are used to select materials for the manufacture of Gunn diodes include
angle-resolved photoemission spectroscopy Angle-resolved photoemission spectroscopy (ARPES) is an experimental technique used in condensed matter physics to probe the allowed energies and momenta of the electrons in a material, usually a crystalline solid. It is based on the photoele ...
.


Applications

Because of their high frequency capability, Gunn diodes are mainly used at microwave frequencies and above. They can produce some of the highest output power of any semiconductor devices at these frequencies. Their most common use is in
oscillators Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
, but they are also used in microwave
amplifier An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost t ...
s to amplify signals. Because the diode is a one-port (two terminal) device, an amplifier circuit must separate the outgoing amplified signal from the incoming input signal to prevent coupling. One common circuit is a ''reflection amplifier'' which uses a
circulator A circulator is a passive, non-reciprocal three- or four- port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where ...
to separate the signals. A bias tee is needed to isolate the bias current from the high frequency oscillations.


Sensors and measuring instruments

Gunn diode oscillators are used to generate microwave power for: airborne collision avoidance radar,
anti-lock brakes An anti-lock braking system (ABS) is a automobile safety, safety anti-Skid (automobile), skid Brake, braking system used on aircraft and on land motor vehicle, vehicles, such as cars, motorcycles, trucks, and buses. ABS operates by preventing t ...
, sensors for monitoring the flow of traffic, car radar detectors, pedestrian safety systems, "distance travelled" recorders, motion detectors, "slow-speed" sensors (to detect pedestrian and traffic movement up to 85 km/h (50 mph)), traffic signal controllers, automatic door openers, automatic traffic gates, process control equipment to monitor throughput, burglar alarms and equipment to detect trespassers, sensors to avoid derailment of trains, remote vibration detectors, rotational speed tachometers, moisture content monitors.


Radio amateur use

By virtue of their low voltage operation, Gunn diodes can serve as microwave frequency generators for very low powered (few-milliwatt) microwave
transceiver In radio communication, a transceiver is an electronic device which is a combination of a radio ''trans''mitter and a re''ceiver'', hence the name. It can both transmit and receive radio waves using an antenna, for communication purposes. Thes ...
s called Gunnplexers. They were first used by British radio amateurs in the late 1970s, and many Gunnplexer designs have been published in journals. They typically consist of an approximately 3 inch waveguide into which the diode is mounted. A low voltage (less than 12 volt) direct current power supply, that can be modulated appropriately, is used to drive the diode. The waveguide is blocked at one end to form a resonant cavity and the other end usually feeds a
horn antenna A horn antenna or microwave horn is an antenna that consists of a flaring metal waveguide shaped like a horn to direct radio waves in a beam. Horns are widely used as antennas at UHF and microwave frequencies, above 300 MHz. They are ...
. An additional "
mixer Mixer may refer to: Electronics * DJ mixer, a type of audio mixing console used by disc jockeys * Electronic mixer, electrical circuit for adding signal voltages * Frequency mixer, electrical circuit that creates new frequencies from two signals ...
diode" is inserted into the waveguide, and it is often connected to a modified
FM broadcast FM broadcasting is a method of radio broadcasting using frequency modulation (FM). Invented in 1933 by American engineer Edwin Armstrong, wide-band FM is used worldwide to provide high fidelity sound over broadcast radio. FM broadcasting is capa ...
receiver to enable listening of other amateur stations. Gunnplexers are most commonly used in the 10 GHz and 24 GHz ham bands and sometimes 22 GHz security alarms are modified as the diode(s) can be put in a slightly detuned cavity with layers of copper or aluminium foil on opposite edges for moving to the licensed amateur band. Typically, the mixer diode if intact is reused in its existing waveguide and these parts are well known for being extremely static sensitive. On most commercial units this part is protected with a parallel resistor and other components and a variant is used in some Rb atomic clocks. The mixer diode is useful for lower frequency applications even if the Gunn diode is weakened from use, and some amateur radio enthusiasts have used them in conjunction with an external oscillator or n/2 wavelength Gunn diode for satellite finding and other applications.


Radio astronomy

Gunn oscillators are used as local oscillators for millimeter-wave and submillimeter-wave radio astronomy receivers. The Gunn diode is mounted in a cavity tuned to resonate at twice the fundamental frequency of the diode. The cavity length is changed by a micrometer adjustment. Gunn oscillators capable of generating over 50 mW over a 50% tuning range (one waveguide band) are available.J.E. Carlstrom, R.L. Plambeck, and D. D. Thornton. ''A Continuously Tunable 65-115 GHz Gunn Oscillator'', IEEE, 198

/ref> The Gunn oscillator frequency is multiplied by a diode frequency multiplier for submillimeter-wave applications.


References

{{DEFAULTSORT:Gunn Diode Diodes Microwave technology Terahertz technology