Ground field
   HOME

TheInfoList



OR:

In mathematics, a ground field is a field ''K'' fixed at the beginning of the discussion.


Use

It is used in various areas of algebra:


In linear algebra

In
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrices ...
, the concept of a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
may be developed over any field.


In algebraic geometry

In algebraic geometry, in the foundational developments of André Weil the use of fields other than the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s was essential to expand the definitions to include the idea of
abstract algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
over ''K'', and
generic point In algebraic geometry, a generic point ''P'' of an algebraic variety ''X'' is, roughly speaking, a point at which all generic properties are true, a generic property being a property which is true for almost every point. In classical algebraic g ...
relative to ''K''.


In Lie theory

Reference to a ground field may be common in the theory of Lie algebras (''qua'' vector spaces) and
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Ma ...
s (''qua'' algebraic varieties).


In Galois theory

In
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, given a field extension ''L''/''K'', the field ''K'' that is being extended may be considered the ground field for an argument or discussion. Within algebraic geometry, from the point of view of scheme theory, the spectrum ''Spec''(''K'') of the ground field ''K'' plays the role of
final object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
in the category of ''K''-schemes, and its structure and symmetry may be richer than the fact that the space of the scheme is a point might suggest.


In Diophantine geometry

In
diophantine geometry In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study ...
the characteristic problems of the subject are those caused by the fact that the ground field ''K'' is not taken to be
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . Examples As an example, the field of real numbers is not algebraically closed, because ...
. The field of definition of a variety given abstractly may be smaller than the ground field, and two varieties may become isomorphic when the ground field is enlarged, a major topic in
Galois cohomology In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group ''G'' associated to a field extension ''L''/''K'' acts in a natur ...
.


Notes

{{reflist Field (mathematics) *