Gramme machine
   HOME

TheInfoList



OR:

A Gramme machine, Gramme ring, Gramme magneto, or Gramme dynamo is an
electrical generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power ( chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, ...
that produces
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
, named for its Belgian inventor,
Zénobe Gramme Zénobe Théophile Gramme (4 April 1826 – 20 January 1901) was a Belgian electrical engineer. He was born at Jehay-Bodegnée on 4 April 1826, the sixth child of Mathieu-Joseph Gramme, and died at Bois-Colombes on 20 January 1901. He invented ...
, and was built as either a
dynamo "Dynamo Electric Machine" (end view, partly section, ) A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundati ...
or a
magneto A magneto is an electrical generator that uses permanent magnets to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a commutator to produce direct current. It is categorized as a form of alternator, ...
. It was the first generator to produce power on a commercial scale for industry. Inspired by a machine invented by
Antonio Pacinotti Antonio Pacinotti (17 June 1841 – 24 March 1912) was an Italian physicist, who was Professor of Physics at the University of Pisa. Biography Pacinotti was born in Pisa, where he also died. He was the son of Luigi Pacinotti and Caterin ...
in 1860, Gramme was the developer of a new induced rotor in form of a wire-wrapped ring (Gramme ring) and demonstrated this apparatus to the
Academy of Sciences An academy of sciences is a type of learned society or academy (as special scientific institution) dedicated to sciences that may or may not be state funded. Some state funded academies are tuned into national or royal (in case of the Unit ...
in
Paris Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. Si ...
in 1871. Although popular in 19th century electrical machines, the Gramme winding principle is no longer used since it makes inefficient use of the conductors. The portion of the winding on the interior of the ring cuts no flux and does not contribute to energy conversion in the machine. The winding requires twice the number of turns and twice the number of commutator bars as an equivalent drum-wound armature.


Description

The Gramme machine used a ring armature, with a series of armature coils, wound around a revolving ring of soft
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
. The coils are connected in series, and the junction between each pair is connected to a
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, ...
on which two brushes run. Permanent
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nicke ...
s magnetize the soft iron ring, producing a
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
which rotates around through the coils in order as the armature turns. This induces a
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
in two of the coils on opposite sides of the armature, which is picked off by the brushes. Earlier electromagnetic machines passed a magnet near the poles of one or two electromagnets, or rotated coils wound on double-T armatures within a static magnetic field, creating brief spikes or pulses of DC resulting in a transient output of low average power, rather than a constant output of high average power. With more than a few coils on the Gramme ring armature, the resulting voltage waveform is practically constant, thus producing a near
direct current Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or ev ...
supply. This type of machine needs only
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
s producing the magnetic field to become a modern generator.


Invention of modern electric motor

During a demonstration at an industrial exposition in
Vienna en, Viennese , iso_code = AT-9 , registration_plate = W , postal_code_type = Postal code , postal_code = , timezone = CET , utc_offset = +1 , timezone_DST ...
in 1873, Gramme accidentally discovered that this device, if supplied with a constant-
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
power supply, will act as an
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
. Gramme's partner,
Hippolyte Fontaine Hippolyte Fontaine (born François-Hypolite Fontaine, 12 April 1833 in Dijon – 17 February 1910 in Hyères) was a French electrical engineer who worked with Zénobe Gramme on the development of the Gramme machine (the first industrially viable ...
, carelessly connected the terminals of a Gramme machine to another dynamo which was producing electricity, and its shaft began to spin."Hippolyte Fontaine"Britannica Online
Encyclopædia Britannica, Inc. Retrieved 2010-01-11. The Gramme machine was the first powerful electric motor useful as more than a toy or laboratory curiosity. Today some elements of this design forms the basis of nearly all DC electric motors. Gramme's use of multiple commutator contacts with multiple overlapped coils, and his innovation of using a ring armature, was an improvement on earlier
dynamo "Dynamo Electric Machine" (end view, partly section, ) A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundati ...
s and helped usher in development of large-scale electrical devices. Earlier designs of electric motors were notoriously inefficient because they had large, or very large, air gaps throughout much of the rotation of their rotors. Long air gaps create weak forces, resulting in low torque. A device called the St. Louis motor (still available from scientific supply houses), although not intended to, clearly demonstrates this great inefficiency, and seriously misleads students as to how real motors work. These early inefficient designs apparently were based on observing how magnets attracted ferromagnetic materials (such as iron and steel) from some distance away. It took a number of decades in the 19th century for electrical engineers to learn the importance of small air gaps. The Gramme ring, however, has a comparatively small air gap, which enhances its efficiency. (In the top illustration, the large hoop-like piece is the laminated permanent magnet; the Gramme ring is rather hard to see at the base of the hoop.)


Principle of operation

This illustration shows a simplified one-pole, one-coil Gramme ring and a graph of the current produced as the ring spins one revolution. While no actual device uses this exact design, this diagram is a building block to better understand the next illustrations., pp. 174–178. A one-pole, two-coil Gramme ring. The second coil on the opposite side of the ring is wired in
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster o ...
with the first. Because the bottom coil is oriented opposite of the top coil, but both are immersed in the same magnetic field, the current forms a ring across the brush terminals. A two-pole, four-coil Gramme ring. The coils of A and A' sum together, as do the coils of B and B', producing two pulses of power 90° out of phase with each other. When coils A and A' are at maximum output, coils B and B' are at zero output. A three-pole, six-coil Gramme ring, and a graph of the combined three poles, each 120° out of phase from the other and summing together.


Drum windings

While the Gramme ring permitted a more steady power output, it suffered from a technical design inefficiency due to how magnetic lines of force pass through a ring armature. The field lines tend to concentrate within and follow the surface metal of the ring to the other side, with relatively few lines of force penetrating into the interior of the ring. Consequently, the interior windings of each small coil are minimally effective at producing power because they cut very few lines of force compared with the windings on the exterior of the ring. The interior windings are effectively ''dead wire'' and only add resistance to the circuit, lowering efficiency. Initial attempts to insert a stationary field coil within the center of the ring to help the lines penetrate into the center proved too complex to engineer. Further, if the lines did penetrate the interior of the ring any e.m.f. produced would have opposed the e.m.f. from the outside of the ring because the wire on the inside was orientated in the opposite direction to that on the outside having turned through 180 degrees as it was wound. Eventually it was found to be more efficient to wrap a single loop of wire across the exterior of the ring and simply not have any part of the loop pass through the interior. This also reduces construction complexity since one large winding spanning the width of the ring is able to take the place of two smaller windings on opposite sides of the ring. All modern armatures use this externally wrapped (drum) design, although the windings do not extend fully across the diameter; they are more akin to chords of a circle, in geometrical terms. Neighboring windings overlap, as can be seen in almost any modern motor or generator rotor that has a commutator. In addition, windings are placed into slots with a rounded shape (as seen from the end of the rotor). At the surface of the rotor, the slots are only as wide as needed to permit the insulated wire to pass through them while winding the coils. While the hollow ring could now be replaced with a solid cylindrical core or ''drum'', the ring still proves to be a more efficient design, because in a solid core the field lines concentrate in a thin surface region and minimally penetrate the center. For a very large power-generation armature several feet in diameter, using a hollow ring armature requires far less metal and is lighter than a solid core drum armature. The hollow center of the ring also provides a path for ventilation and cooling in high power applications. In small armatures a solid drum is often used simply for ease of construction, since the core can be easily formed from a stack of stamped metal disks keyed to lock into a slot on the shaft., pp. 224–226.


See also

*
Electric generator In electricity generation, a generator is a device that converts motive power ( mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, g ...
*
Electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate f ...
*
Dynamo "Dynamo Electric Machine" (end view, partly section, ) A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundati ...
*
Alternator An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Gor ...
*
Rotary converter A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter. Rotary converters were used to convert alternating current (AC) to direct current (DC), or DC to AC power, before the adv ...
*
Excitation (magnetic) An electric generator or electric motor consists of a rotor spinning in a magnetic field. The magnetic field may be produced by permanent magnets or by field coils. In the case of a machine with field coils, a current must flow in the coils ...
*
Field coil A field coil is an electromagnet used to generate a magnetic field in an electro-magnetic machine, typically a rotating electrical machine such as a motor or generator. It consists of a coil of wire through which a current flows. In a rotatin ...
*
Stator The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors or biological rotors. Energy flows through a stator to or from the rotating component of the system. In an electric m ...


References


External links

*
Electricity museum: early motors
{{DEFAULTSORT:Gramme Machine Electrical generators Belgian inventions de:Zénobe Gramme#Funktionsprinzip des Grammeschen Rings fr:Dynamo