Glutamate-gated chloride channel
   HOME

TheInfoList



OR:

Chloride channels are a superfamily of poorly understood ion channels specific for
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
. These channels may conduct many different ions, but are named for chloride because its concentration ''in vivo'' is much higher than other anions. Several families of voltage-gated channels and
ligand-gated Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl− to pass through the membrane in res ...
channels (e.g., the CaCC families) have been characterized in humans. Voltage-gated chloride channels display a variety of important physiological and cellular roles that include regulation of pH, volume homeostasis, organic solute transport, cell migration, cell proliferation and differentiation. Based on sequence homology the chloride channels can be subdivided into a number of groups.


General functions

Voltage-gated chloride channels are important for setting cell
resting membrane potential A relatively static membrane potential which is usually referred to as the ground value for trans-membrane voltage. The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as oppo ...
and maintaining proper cell volume. These channels conduct or other anions such as . The structure of these channels are not like other known channels. The chloride channel subunits contain between 1 and 12 transmembrane segments. Some chloride channels are activated only by voltage (i.e., voltage-gated), while others are activated by , other extracellular ligands, or pH.


CLC family

The CLC family of chloride channels contains 10 or 12
transmembrane helices A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs generally adopt an alpha helix topological conformation, although some TMDs such as those in porins can adopt a different conformation. Because the interior of the lipid bi ...
. Each protein forms a single pore. It has been shown that some members of this family form homodimers. In terms of primary structure, they are unrelated to known cation channels or other types of anion channels. Three CLC subfamilies are found in animals.
CLCN1 The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regula ...
is involved in setting and restoring the resting membrane potential of skeletal muscle, while other channels play important parts in solute concentration mechanisms in the kidney. These proteins contain two
CBS domain In molecular biology, the CBS domain is a protein domain found in a range of proteins in all species from bacteria to humans. It was first identified as a conserved sequence region in 1997 and named after cystathionine beta synthase, one of the p ...
s. Chloride channels are also important for maintaining safe
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
concentrations within plant cells.


Structure and mechanism

The CLC channel structure has not yet been resolved, however the structure of the CLC exchangers has been resolved by
x-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
. Because the primary structure of the channels and exchangers are so similar, most assumptions about the structure of the channels are based on the structure established for the bacterial exchangers. Each channel or exchanger is composed of two similar subunits—a dimer—each subunit containing one pore. The proteins are formed from two copies of the same protein—a homodimer—though scientists have artificially combined subunits from different channels to form heterodimers. Each subunit binds ions independently of the other, meaning conduction or exchange occur independently in each subunit. Each subunit consists of two related halves oriented in opposite directions, forming an ‘antiparallel’ structure. These halves come together to form the anion pore. The pore has a filter through which chloride and other anions can pass, but lets little else through. These water-filled pores filter anions via three
binding site In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. The binding partner of the macromolecule is often referred to as a ligand. Ligands may includ ...
s—Sint, Scen, and Sext—which bind chloride and other anions. The names of these binding sites correspond to their positions within the membrane. Sint is exposed to intracellular fluid, Scen lies inside the membrane or in the center of the filter, and Sext is exposed to extracellular fluid. /sup> Each binding site binds different chloride anions simultaneously. In the exchangers, these chloride ions do not interact strongly with one another, due to compensating interactions with the protein. In the channels, the protein does not shield chloride ions at one binding site from the neighboring negatively charged chlorides. Each negative charge exerts a repulsive force on the negative charges next to it. Researchers have suggested that this mutual repulsion contributes to the high rate of conduction through the pore. CLC transporters shuttle H+ across the membrane. The H+ pathway in CLC transporters utilizes two glutamate residues—one on the extracellular side, Gluex, and one on the intracellular side, Gluin. Gluex also serves to regulate chloride exchange between the protein and extracellular solution. This means that the chloride and the proton share a common pathway on the extracellular side, but diverge on the intracellular side. CLC channels also have dependence on H+, but for gating rather than Cl exchange. Instead of utilizing gradients to exchange two Cl for one H+, the CLC channels transport one H+ while simultaneously transporting millions of anions. This corresponds with one cycle of the slow gate. Eukaryotic CLC channels also contain
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
ic domains. These domains have a pair of CBS motifs, whose function is not fully characterized yet. Though the precise function of these domains is not fully characterized, their importance is illustrated by the
pathologies Pathology is the study of the causes and effects of disease or injury. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in ...
resulting from their mutation. Thomsen's disease,
Dent's disease Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urin ...
, infantile malignant
osteopetrosis Osteopetrosis, literally "stone bone", also known as marble bone disease or Albers-Schönberg disease, is an extremely rare inherited disorder whereby the bones harden, becoming denser, in contrast to more prevalent conditions like osteoporosis ...
, and Bartter's syndrome are all genetic disorders due to such mutations. At least one role of the cytoplasmic CBS domains regards regulation via adenosine
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecule ...
s. Particular CLC transporters and proteins have modulated activity when bound with ATP, ADP,
AMP #REDIRECT Amp {{Redirect category shell, {{R from other capitalisation{{R from ambiguous page ...
, or adenosine at the CBS domains. The specific effect is unique to each protein, but the implication is that certain CLC transporters and proteins are sensitive to the metabolic state of the cell.


Selectivity

The Scen acts as the primary selectivity filter for most CLC proteins, allowing the following anions to pass through, from most selected to least: SCN, Cl, Br, NO, I. Altering a serine residue at the selectivity filter, labeled Sercen, to a different amino acid alters the selectivity.


Gating and kinetics

Gating occurs through two mechanisms: protopore or fast gating and common or slow gating. Common gating involves both protein subunits closing their pores at the same time (cooperation), while protopore gating involves independent opening and closing of each pore. As the names imply, fast gating occur at a much faster rate than slow gating. Precise molecular mechanisms for gating are still being studied. For the channels, when the slow gate is closed, no ions permeate through the pore. When the slow gate is open, the fast gates open spontaneously and independently of one another. Thus, the protein could have both gates open, or both gates closed, or just one of the two gates open. Single-channel patch-clamp studies demonstrated this biophysical property even before the dual-pore structure of CLC channels had been resolved. Each fast gate opens independently of the other and the ion conductance measured during these studies reflects a binomial distribution. H+ transport promotes opening of the common gate in CLC channels. For every opening and closing of the common gate, one H+ is transported across the membrane. The common gate is also affected by the bonding of adenosine nucleotides to the intracellular CBS domains. Inhibition or activation of the protein by these domains is specific to each protein.


Function

The CLC channels allow chloride to flow down its electrochemical gradient, when open. These channels are expressed on the cell membrane. CLC channels contribute to the excitability of these membranes as well as transport ions across the membrane. The CLC exchangers are localized to intracellular components like endosomes or lysosomes and help regulate the pH of their compartments.


Pathology

Bartter's syndrome, which is associated with renal salt wasting and hypokalemic
alkalosis Alkalosis is the result of a process reducing hydrogen ion concentration of arterial blood plasma (alkalemia). In contrast to acidemia (serum pH 7.35 or lower), alkalemia occurs when the serum pH is higher than normal (7.45 or higher). Alkalosis ...
, is due to the defective transport of chloride ions and associated ions in the thick ascending
loop of Henle In the kidney, the loop of Henle () (or Henle's loop, Henle loop, nephron loop or its Latin counterpart ''ansa nephroni'') is the portion of a nephron that leads from the proximal convoluted tubule to the distal convoluted tubule. Named after its ...
.
CLCNKB Chloride channel Kb, also known as CLCNKB, is a protein which in humans is encoded by the ''CLCNKB'' gene. Chloride channel Kb (CLCNKB) is a member of the CLC family of voltage-gated chloride channels, which comprises at least 9 mammalian chlori ...
has been implicated. Another inherited disease that affects the kidney organs is
Dent's Disease Dent's disease (or Dent disease) is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urin ...
, characterised by low molecular weight
proteinuria Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy (although this symptom ma ...
and
hypercalciuria Hypercalciuria is the condition of elevated calcium in the urine. Chronic hypercalciuria may lead to impairment of renal function, nephrocalcinosis, and chronic kidney disease. Patients with hypercalciuria have kidneys that put out higher levels ...
where mutations in
CLCN5 The ''CLCN5'' gene encodes the chloride channel Cl-/H+ exchanger ClC-5. ClC-5 is mainly expressed in the kidney, in particular in proximal tubules where it participates to the uptake of albumin and low-molecular-weight proteins, which is one of th ...
are implicated. Thomsen disease is associated with dominant mutations and Becker disease with recessive mutations in
CLCN1 The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regula ...
.


Genes

*
CLCN1 The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regula ...
, CLCN2, CLCN3, CLCN4,
CLCN5 The ''CLCN5'' gene encodes the chloride channel Cl-/H+ exchanger ClC-5. ClC-5 is mainly expressed in the kidney, in particular in proximal tubules where it participates to the uptake of albumin and low-molecular-weight proteins, which is one of th ...
, CLCN6,
CLCN7 Chloride channel 7 alpha subunit also known as H+/Cl− exchange transporter 7 is a protein that in humans is encoded by the CLCN7 gene. In melanocytic cells this gene is regulated by the Microphthalmia-associated transcription factor. Clinical ...
, CLCNKA,
CLCNKB Chloride channel Kb, also known as CLCNKB, is a protein which in humans is encoded by the ''CLCNKB'' gene. Chloride channel Kb (CLCNKB) is a member of the CLC family of voltage-gated chloride channels, which comprises at least 9 mammalian chlori ...
*
BSND Bartter syndrome, infantile, with sensorineural deafness (Barttin), also known as BSND, is a human gene which is associated with Bartter syndrome. This gene encodes an essential beta subunit for CLC chloride channels. These heteromeric channels l ...
- encodes barttin, accessory subunit beta for CLCNKA and CLCNKB


E-ClC family

Members of Epithelial Chloride Channel (E-ClC) Family (TC# 1.A.13) catalyze bidirectional transport of chloride ions. Mammals have multiple isoforms (at least 6 different gene products plus splice variants) of epithelial chloride channel proteins, catalogued into the Chloride channel accessory (CLCA) family. The first member of this family to be characterized was a respiratory epithelium, Ca2+-regulated, chloride channel protein isolated from bovine tracheal apical membranes. It was biochemically characterized as a 140 kDa complex. The bovine EClC protein has 903 amino acids and four putative transmembrane segments. The purified complex, when reconstituted in a planar lipid bilayer, behaved as an anion-selective channel. It was regulated by Ca2+ via a calmodulin kinase II-dependent mechanism. Distant homologues may be present in plants, ciliates and bacteria, ''Synechocystis'' and ''Escherichia coli'', so at least some domains within E-ClC family proteins have an ancient origin.


Genes

* CLCA1, CLCA2, CLCA3, CLCA4


CLIC family

The Chloride Intracellular Ion Channel (CLIC) Family (TC# 1.A.12) consists of six conserved proteins in humans ( CLIC1, CLIC2, CLIC3, CLIC4, CLIC5, CLIC6). Members exist as both
monomer In chemistry, a monomer ( ; '' mono-'', "one" + ''-mer'', "part") is a molecule that can react together with other monomer molecules to form a larger polymer chain or three-dimensional network in a process called polymerization. Classification ...
ic soluble proteins and
integral membrane protein An integral, or intrinsic, membrane protein (IMP) is a type of membrane protein that is permanently attached to the biological membrane. All ''transmembrane proteins'' are IMPs, but not all IMPs are transmembrane proteins. IMPs comprise a sign ...
s where they function as chloride-selective ion channels. These proteins are thought to function in the regulation of the membrane potential and in transepithelial ion absorption and secretion in the kidney. They are a member of the
glutathione S-transferase Glutathione ''S''-transferases (GSTs), previously known as ligandins, are a family of eukaryotic and prokaryotic phase II metabolic isozymes best known for their ability to catalyze the conjugation of the reduced form of glutathione (GSH) ...
(GST) superfamily.


Structure

They possess one or two putative transmembrane α-helical segments (TMSs). The bovine p64 protein is 437 amino acyl residues in length and has the two putative TMSs at positions 223-239 and 367-385. The N- and C-termini are cytoplasmic, and the large central luminal loop may be
glycosylated Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
. The human nuclear protein (CLIC1 or NCC27) is much smaller (241 residues) and has only one putative TMS at positions 30-36. It is homologous to the second half of p64. Structural studies showed that in the soluble form, CLIC proteins adopt a GST fold with an active site exhibiting a conserved glutaredoxin monothiol motif, similar to the omega class GSTs. Al Khamici ''et al.'' demonstrated that CLIC proteins have glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity. CLICs 1, 2 and 4 demonstrate typical glutaredoxin-like activity using 2-hydroxyethyl disulfide as a substrate. This activity may regulate CLIC ion channel function.


Transport reaction

The generalized transport reaction believed to be catalyzed chloride channels is: :Cl (cytoplasm) → Cl (intraorganellar space)


CFTR

CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the ''CFTR'' gene. Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked wi ...
is a chloride channel belonging to the superfamily of
ABC ABC are the first three letters of the Latin script known as the alphabet. ABC or abc may also refer to: Arts, entertainment, and media Broadcasting * American Broadcasting Company, a commercial U.S. TV broadcaster ** Disney–ABC Television ...
transporters. Each channel has two transmembrane domains and two nucleotide binding domains. ATP binding to both nucleotide binding domains causes changes these domains to associate, further causing changes that open up the ion pore. When ATP is hydrolyzed, the nucleotide binding domains dissociate again and the pore closes.


Pathology

Cystic fibrosis is caused by mutations in the
CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the ''CFTR'' gene. Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked wi ...
gene on chromosome 7, the most common mutation being deltaF508 (a deletion of a codon coding for phenylalanine, which occupies the 508th amino acid position in the normal CFTR polypeptide). Any of these mutations can prevent the proper folding of the protein and induce its subsequent degradation, resulting in decreased numbers of chloride channels in the body. This causes the buildup of mucus in the body and chronic infections.


Other chloride channels and families

* GABAA * Glycine Receptor *
Calcium-activated chloride channel The Calcium-Dependent Chloride Channel (Ca-ClC) proteins (or calcium-activated chloride channels (CaCCs), are heterogeneous groups of ligand-gated ion channels for chloride that have been identified in many epithelial and endothelial cell types a ...
*
Anion-conducting channelrhodopsin Anion-conducting channelrhodopsins are light-gated ion channels that open in response to light and let negatively charged ions (such as chloride) enter a cell. All channelrhodopsins use retinal as light-sensitive pigment, but they differ in their ...


References


Further reading

* * * *


External links

* * - CLC chloride channels {{CCBYSASource, sourcepath= http://www.tcdb.org/search/result.php?tc=1.a.12, sourcearticle= 1.A.12 The Intracellular Chloride Channel (CLIC) Family , revision=699838558 Membrane proteins Transmembrane transporters Integral membrane proteins Protein domains