A **geocentric orbit** or **Earth orbit** involves any object orbiting the Earth, such as the Moon or artificial satellites. In 1997 NASA estimated there were approximately 2,465 artificial satellite payloads orbiting the Earth and 6,216 pieces of space debris as tracked by the Goddard Space Flight Center.^{[1]} Over 16,291 previously launched objects have decayed into the Earth's atmosphere.^{[1]}

A spacecraft enters orbit when its centripetal acceleration due to gravity is less than or equal to the centrifugal acceleration due to the horizontal component of its velocity. For a low Earth orbit, this velocity is about 7,800 m/s (28,100 km/h; 17,400 mph);^{[2]} by contrast, the fastest manned airplane speed ever achieved (excluding speeds achieved by deorbiting spacecraft) was 2,200 m/s (7,900 km/h; 4,900 mph) in 1967 by the North American X-15.^{[3]} The energy required to reach Earth orbital velocity at an altitude of 600 km (370 mi) is about 36 MJ/kg, which is six times the energy needed merely to climb to the corresponding altitude.^{[4]}

Spacecraft with a perigee below about 2,000 km (1,200 mi) are subject to drag from the Earth's atmosphere,^{[5]} which decreases the orbital altitude. The rate of orbital decay depends on the satellite's cross-sectional area and mass, as well as variations in the air density of the upper atmosphere. Below about 300 km (190 mi), decay becomes more rapid with lifetimes measured in days. Once a satellite descends to 180 km (110 mi), it has only hours before it vaporizes in the atmosphere.^{[6]} The escape velocity required to pull free of Earth's gravitational field altogether and move into interplanetary space is about 11,200 m/s (40,300 km/h; 25,100 mph).^{[7]}

- Low Earth orbit (LEO)
- Geocentric orbits ranging in altitude from 160 kilometers (100 statute miles) to 2,000 kilometres (1,200 mi) above mean sea level. At 160 km, one revolution takes approximately 90 minutes, and the circular orbital speed is 8,000 metres per second (26,000 ft/s).
- Medium Earth orbit (MEO)
- Geocentric orbits with altitudes at apogee ranging between 2,000 kilometres (1,200 mi) and that of the geosynchronous orbit at 35,786 kilometres (22,236 mi).
- Geosynchronous orbit (GEO)
- Geocentric circular orbit with an altitude of 35,786 kilometres (22,236 mi). The period of the orbit equals one sidereal day, coinciding with the rotation period of the Earth. The speed is approximately 3,000 metres per second (9,800 ft/s).
- High Earth orbit (HEO)
- Geocentric orbits with altitudes at apogee higher than that of the geosynchronous orbit. A special case of high Earth orbit is the highly elliptical orbit, where altitude at perigee is less than 2,000 kilometres (1,200 mi).
^{[8]}

- Inclined orbit
- An orbit whose inclination in reference to the equatorial plane is not 0.
- Polar orbit
- A satellite that passes above or nearly above both poles of the planet on each revolution. Therefore it has an inclination of (or very close to) 90 degrees.
- Polar sun synchronous orbit
- A nearly polar orbit that passes the equator at the same local time on every pass. Useful for image-taking satellites because shadows will be the same on every pass.

- Circular orbit
- An orbit that has an eccentricity of 0 and whose path traces a circle.
- Elliptic orbit
- An orbit with an eccentricity greater than 0 and less than 1 whose orbit traces the path of an ellipse.
- Hohmann transfer orbit
- An orbital maneuver that moves a spacecraft from one circular orbit to another using two engine impulses. This maneuver was named after Walter Hohmann.
- Geosynchronous transfer orbit (GTO)
- A geocentric-elliptic orbit where the perigee is at the altitude of a Low Earth Orbit (LEO) and the apogee at the altitude of a geosynchronous orbit.
- Highly elliptical orbit (HEO)
- Geocentric orbit with apogee above 35,786 km and low perigee (about 1,000 km) that result in long dwell times near apogee.
- Molniya orbit
- A highly elliptical orbit with inclination of 63.4° and orbital period of ½ of a sidereal day (roughly 12 hours). Such a satellite spends most of its time over a designated area of the Earth.
- Tundra orbit
- A highly elliptical orbit with inclination of 63.4° and orbital period of one sidereal day (roughly 24 hours). Such a satellite spends most of its time over a designated area of the Earth.

- Hyperbolic trajectory
- An "orbit" with eccentricity greater than 1. The object's velocity reaches some value in excess of the escape velocity, therefore it will escape the gravitational pull of the Earth and continue to travel