Genetics of infertility
   HOME

TheInfoList



OR:

About 10–15% of human couples are infertile, unable to conceive. In approximately in half of these cases, the underlying cause is related to the male. The underlying causative factors in the male infertility can be attributed to environmental toxins, systemic disorders such as, hypothalamic–pituitary disease,
testicular cancer Testicular cancer is cancer that develops in the testicles, a part of the male reproductive system. Symptoms may include a lump in the testicle, or swelling or pain in the scrotum. Treatment may result in infertility. Risk factors include an ...
s and germ-cell
aplasia Aplasia (; from Greek ''a'', "not", "no" + ''plasis'', "formation") is a birth defect where an organ or tissue is wholly or largely absent. It is caused by a defect in a developmental process. Aplastic anemia is the failure of the body to produc ...
. Genetic factors including
aneuploidies Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any ...
and single-gene mutations are also contributed to the male infertility. Patients with nonobstructive azoospermia or
oligozoospermia Terms oligospermia, oligozoospermia, and low sperm count refer to semen with a low concentration of sperm and is a common finding in male infertility. Often semen with a decreased sperm concentration may also show significant abnormalities in sperm ...
show microdeletions in the long arm of the
Y chromosome The Y chromosome is one of two sex chromosomes (allosomes) in therian mammals, including humans, and many other animals. The other is the X chromosome. Y is normally the sex-determining chromosome in many species, since it is the presence or abse ...
and/or chromosomal abnormalities, each with the respective frequency of 9.7% and 13%. A large percentage of human male infertility is estimated to be caused by mutations in genes involved in primary or secondary spermatogenesis and sperm quality and function. Single-gene defects are the focus of most research carried out in this field. NR5A1 mutations are associated with male infertility, suggesting the possibility that these mutations cause the infertility. However, it is possible that these mutations individually have no major effect and only contribute to the male infertility by collaboration with other contributors such as environmental factors and other genomics variants. Vice versa, existence of the other alleles could reduce the phenotypic effects of impaired NR5A1 proteins and attenuate the expression of abnormal phenotypes and manifest male infertility solely.


NR5A1 roles in sex development and related disorders

Nuclear receptor subfamily 5 group A member 1 (NR5A1), also known as SF1 or Ad4BP ( MIM 184757), is located on the long arm of
chromosome 9 Chromosome 9 is one of the 23 pairs of chromosomes in humans. Humans normally have two copies of this chromosome, as they normally do with all chromosomes. Chromosome 9 spans about 138 million base pairs of nucleic acids (the building blocks of D ...
(9q33.3). The NR5A1 is an orphan nuclear receptor that was first identified following the search for a common regulator of the cytochrome P450 steroid hydroxylase enzyme family. This receptor is a pivotal transcriptional regulator of an array of genes involved in reproduction, steroidogenesis and male sexual differentiation and also plays a crucial role in adrenal gland formation in both sexes. NR5A1 regulates the mullerian inhibitory substance by binding to a conserved upstream regulatory element and directly participates in the process of mammalian sex determination through mullerian duct regression. Targeted disruption of NR5A1 (Ftzf1) in mice results in gonadal and adrenal agenesis, persistence of Mullerian structures and abnormalities of the
hypothalamus The hypothalamus () is a part of the brain that contains a number of small nuclei with a variety of functions. One of the most important functions is to link the nervous system to the endocrine system via the pituitary gland. The hypothalamu ...
and pituitary gonadotropes.
Heterozygous Zygosity (the noun, zygote, is from the Greek "yoked," from "yoke") () is the degree to which both copies of a chromosome or gene have the same genetic sequence. In other words, it is the degree of similarity of the alleles in an organism. Mo ...
animals demonstrate a milder phenotype including an impaired adrenal stress response and reduced testicular size. In humans, NR5A1 mutations were first described in patients with 46, XY karyotype and
disorders of sex development Disorders of sex development (DSDs), also known as differences in sex development, diverse sex development and variations in sex characteristics (VSC), are congenital conditions affecting the reproductive system, in which development of chromo ...
(DSD), Mullerian structures and primary adrenal failure (MIM 612965). After that, heterozygous NR5A1 mutations were described in seven patients showing 46, XY karyotype and ambiguous genitalia,
gonadal dysgenesis Gonadal dysgenesis is classified as any congenital developmental disorder of the reproductive system in the male or female. It is the atypical development of the gonads in an embryo, with reproductive tissue replaced with functionless, fibrous ti ...
, but no adrenal insufficiency. Since then, studies have confirmed that mutations in NR5A1 in patients with 46, XY karyotype cause severe underandrogenisation, but no adrenal insufficiency, establishing dynamic and dosage-dependent actions for NR5A1. Subsequent studies revealed that NR5A1 heterozygous mutations cause primary ovarian insufficiency (MIM 612964).


NR5A1 new roles in fertility and infertility

Recently, NR5A1 mutations have been related to human male infertility (MIM 613957). These findings substantially increase the number of NR5A1 mutations reported in humans and show that mutations in NR5A1 can be found in patients with a wide range of phenotypic features, ranging from 46,XY sex reversal with primary adrenal failure to male infertility. For the first time, Bashamboo et al. (2010) conducted a study on the nonobstructive infertile men (a non-Caucasian mixed ancestry n = 315), which resulted in the report of all missense mutations in the NR5A1 gene with 4% frequency. Functional studies of the missense mutations revealed impaired transcriptional activation of NR5A1-responsive target genes. Subsequently, three missense mutations were identified as associated with and most likely the cause of the male infertility, according to computational analyses. The study indicated that the mutation frequency is below 1% (
Caucasian Caucasian may refer to: Anthropology *Anything from the Caucasus region ** ** ** ''Caucasian Exarchate'' (1917–1920), an ecclesiastical exarchate of the Russian Orthodox Church in the Caucasus region * * * Languages * Northwest Caucasian l ...
German origin, n = 488). In another study the coding sequence of NR5A1 has been analysed in a cohort of 90 well-characterised idiopathic Iranian azoospermic infertile men versus 112 fertile men. Heterozygous NR5A1 mutations were found in 2 of 90 (2.2%) of cases. These two patients harboured missense mutations within the hinge region (p.P97T) and ligand-binding domain (p.E237K) of the NR5A1 protein.


Small supernumerary marker chromosomes and infertility

Small supernumerary marker chromosome A small supernumerary marker chromosome (sSMC) is an abnormal extra chromosome. It contains copies of parts of one or more normal chromosomes and like normal chromosomes is located in the cell's nucleus, is replicated and distributed into each d ...
(sSMCs) are extra
chromosomes A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
consisting of parts of virtually any other chromosome(s). By definition, they are smaller than one of the smaller chromosomes, chromosome 20. sSMCs typically develop in individuals as a result of abnormal chromosomal events occurring in one of their parent's eggs, sperms, or zygotes but in less common cases are directly inherited from a parent carrier of the sSMC. sSMCs occur in 0.125% of all infertility cases, are 7.5-fold more common in men, and in women are often associated with ovarian failure. The sSMCs associated with infertility can consist of parts of virtually any other chromosome. While only a small percentage of these sSMCs have had their genetic material defined, those that have include sSMCs containing: a)
band Band or BAND may refer to: Places *Bánd, a village in Hungary *Band, Iran, a village in Urmia County, West Azerbaijan Province, Iran * Band, Mureș, a commune in Romania *Band-e Majid Khan, a village in Bukan County, West Azerbaijan Province, I ...
11.1 from the short arm of chromosome 15 (notated as (15)q11.1)(this sSMC is associated with premature ovarian failure); b) band ll.2 from the short arm of chromosome 13 (notated as (13)q11.2)(this sSMC is associated with oligoasthenoteratozoospermia, i.e.
oligozoospermia Terms oligospermia, oligozoospermia, and low sperm count refer to semen with a low concentration of sperm and is a common finding in male infertility. Often semen with a decreased sperm concentration may also show significant abnormalities in sperm ...
ow sperm count
teratozoospermia Teratospermia or teratozoospermia is a condition characterized by the presence of sperm with abnormal morphology that affects fertility in males. Causes The causes of teratozoospermia are unknown in most cases. However, Hodgkin's disease, coelia ...
resence of sperm with abnormal shapes and asthenozoospermia perm with reduced motility; c) band 11 from the short arm of chromosome 14 (notated as (14)q11.1)(this sCMC is associated with otherwise uncharacterized infertility; and d) band 11 on the short arm of chromosome 22 notated as (22)q11)(this sSMC is associated with repeated abortions).


References

{{reflist, 2 Genetics Infertility