GeSbTe
   HOME

TheInfoList



OR:

GeSbTe (germanium-antimony-tellurium or GST) is a
phase-change material A phase change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and li ...
from the group of
chalcogenide glass Chalcogenide glass (pronounced hard ''ch'' as in ''chemistry'') is a glass containing one or more chalcogens (sulfur, selenium and tellurium, but excluding oxygen). Such glasses are covalently bonded materials and may be classified as covalent netw ...
es used in rewritable
optical disc In computing and optical disc recording technologies, an optical disc (OD) is a flat, usually circular disc that encodes binary data ( bits) in the form of pits and lands on a special material, often aluminum, on one of its flat surface ...
s and
phase-change memory Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat pr ...
applications. Its recrystallization time is 20 nanoseconds, allowing
bitrate In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction ...
s of up to 35
Mbit The megabit is a multiple of the unit bit for digital information. The prefix mega (symbol M) is defined in the International System of Units (SI) as a multiplier of 106 (1 million), and therefore :1 megabit = = = 1000 kilobits. The megabit ...
/s to be written and direct overwrite capability up to 106 cycles. It is suitable for land-groove recording formats. It is often used in rewritable DVDs. New phase-change memories are possible using n-doped GeSbTe
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
. The
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
of the
alloy An alloy is a mixture of chemical elements of which at least one is a metal. Unlike chemical compounds with metallic bases, an alloy will retain all the properties of a metal in the resulting material, such as electrical conductivity, ductili ...
is about 600 °C (900 K) and the
crystallization Crystallization is the process by which solid forms, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposi ...
temperature is between 100 and 150 °C. During writing, the material is erased, initialized into its
crystalline A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
state, with low-intensity laser irradiation. The material heats up to its crystallization temperature, but not its melting point, and crystallizes. The information is written at the crystalline phase, by heating spots of it with short (<10 ns), high-intensity
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
pulses; the material melts locally and is quickly cooled, remaining in the amorphous phase. As the amorphous phase has lower
reflectivity The reflectance of the surface of a material is its effectiveness in Reflection (physics), reflecting radiant energy. It is the fraction of incident electromagnetic power that is reflected at the boundary. Reflectance is a component of the respon ...
than the crystalline phase, data can be recorded as dark spots on the crystalline background. Recently, novel liquid
organogermanium Organogermanium compounds are organometallic compounds containing a carbon to germanium or hydrogen to germanium chemical bond. Organogermanium chemistry is the corresponding chemical science. Germanium shares group 14 in the periodic table with s ...
precursors, such as
isobutylgermane Isobutylgermane (IBGe, Chemical formula: (CH3)2CHCH2GeH3, is an organogermanium compound. It is a colourless, volatile liquid that is used in MOVPE (Metalorganic Vapor Phase Epitaxy) as an alternative to germane. IBGe is used in the deposition o ...
(IBGe) and tetrakis(dimethylamino)germane (TDMAGe) were developed and used in conjunction with the
metalorganics Metal-organic compounds (jargon: metalorganics, metallo-organics) are a class of chemical compounds that contain metals and organic ligands, which confer solubility in organic solvents or volatility. Compounds with these properties find applicatio ...
of
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient t ...
and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, such as tris-dimethylamino antimony (TDMASb) and di-isopropyl telluride (DIPTe) respectively, to grow GeSbTe and other
chalcogenide : 220px, Cadmium sulfide, a prototypical metal chalcogenide, is used as a yellow pigment. A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element. Although all group 16 elements ...
films of very high purity by
metalorganic chemical vapor deposition Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
(MOCVD). Dimethylamino germanium trichloride (DMAGeC) is also reported as the chloride containing and superior dimethylaminogermanium precursor for Ge deposition by MOCVD.


Material properties

GeSbTe is a ternary compound of germanium,
antimony Antimony is a chemical element with the symbol Sb (from la, stibium) and atomic number 51. A lustrous gray metalloid, it is found in nature mainly as the sulfide mineral stibnite (Sb2S3). Antimony compounds have been known since ancient t ...
, and
tellurium Tellurium is a chemical element with the symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionall ...
, with composition GeTe-Sb2Te3. In the GeSbTe system, there is a pseudo-line as shown upon which most of the alloys lie. Moving down this pseudo-line, it can be seen that as we go from Sb2Te3 to GeTe, the melting point and
glass transition temperature The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials (or in amorphous regions within semicrystalline materials) from a hard and relatively brittle "glassy" state into a viscous or rub ...
of the materials increase, crystallization speed decreases and data retention increases. Hence, in order to get high data transfer rate, we need to use material with fast crystallization speed such as Sb2Te3. This material is not stable because of its low activation energy. On the other hand, materials with good amorphous stability like GeTe has slow crystallization speed because of its high activation energy. In its stable state, crystalline GeSbTe has two possible configurations:
hexagonal In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
and a metastable
face-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(FCC) lattice. When it is rapidly crystallized however, it was found to have a distorted rocksalt structure. GeSbTe has a glass transition temperature of around 100 °C. GeSbTe also has many
vacancy defect In crystallography, a vacancy is a type of point defect in a crystal where an atom is missing from one of the lattice sites.Ehrhart, P. (1991) "Properties and interactions of atomic defects in metals and alloys", chapter 2, p. 88 in ''Landolt-B ...
s in the lattice, of 20 to 25% depending on the specific GeSbTe compound. Hence, Te has an extra lone pair of electrons, which are important for many of the characteristics of GeSbTe. Crystal defects are also common in GeSbTe and due to these defects, an Urbach tail in the
band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or ' ...
is formed in these compounds. GeSbTe is generally p type and there are many electronic states in the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
accounting for acceptor and donor like traps. GeSbTe has two stable states, crystalline and amorphous. The phase change mechanism from high resistance amorphous phase to low resistance crystalline phase in nano-timescale and threshold switching are two of the most important characteristic of GeSbTe.


Applications in phase-change memory

The unique characteristic that makes
phase-change memory Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat pr ...
useful as a memory is the ability to effect a reversible phase change when heated or cooled, switching between stable amorphous and crystalline states. These alloys have high resistance in the amorphous state ‘0’ and are
semimetal A semimetal is a material with a very small overlap between the bottom of the conduction band and the top of the valence band. According to electronic band theory, solids can be classified as insulators, semiconductors, semimetals, or metals ...
s in the crystalline state ‘1’. In amorphous state, the atoms have short-range atomic order and low free electron density. The alloy also has high resistivity and activation energy. This distinguishes it from the crystalline state having low resistivity and activation energy, long-range atomic order and high free electron density. When used in phase-change memory, use of a short, high amplitude electric pulse such that the material reaches melting point and rapidly quenched changes the material from crystalline phase to amorphous phase is widely termed as RESET current and use of a relatively longer, low amplitude electric pulse such that the material reaches only the crystallization point and given time to crystallize allowing phase change from amorphous to crystalline is known as SET current. The early devices were slow, power consuming and broke down easily due to the large currents. Therefore, it did not succeed as SRAM and flash memory took over. In the 1980s though, the discovery of germanium-antimony-tellurium (GeSbTe) meant that phase-change memory now needed less time and power to function. This resulted in the success of the rewriteable optical disk and created renewed interest in the phase-change memory. The advances in
lithography Lithography () is a planographic method of printing originally based on the immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by the German a ...
also meant that previously excessive programming current has now become much smaller as the volume of GeSbTe that changes phase is reduced. Phase-change memory has many near ideal memory qualities such as non-volatility, fast switching speed, high endurance of more than 1013 read –write cycles, non-destructive read, direct overwriting and long data retention time of more than 10 years. The one advantage that distinguishes it from other next generation non-volatile memory like magnetic random access memory (MRAM) is the unique scaling advantage of having better performance with smaller sizes. The limit to which phase-change memory can be scaled is hence limited by lithography at least until 45 nm. Thus, it offers the biggest potential of achieving ultra-high memory density cells that can be commercialized. Though phase-change memory offers much promise, there are still certain technical problems that need to be solved before it can reach ultra-high density and commercialized. The most important challenge for phase-change memory is to reduce the programming current to the level that is compatible with the minimum
MOS MOS or Mos may refer to: Technology * MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor * Mathematical Optimization Society * Model output statistics, a weather-forecasting technique * MOS (filmm ...
transistor drive current for high-density integration. Currently, the programming current in phase-change memory is substantially high. This high current limits the memory density of the
phase-change memory Phase-change memory (also known as PCM, PCME, PRAM, PCRAM, OUM (ovonic unified memory) and C-RAM or CRAM (chalcogenide RAM)) is a type of non-volatile random-access memory. PRAMs exploit the unique behaviour of chalcogenide glass. In PCM, heat pr ...
cells as the current supplied by the transistor is not sufficient due to their high current requirement. Hence, the unique scaling advantage of phase-change memory cannot be fully utilized. The typical phase-change memory device design is shown. It has layers including the top electrode, GST, the GeSbTe layer, BEC, the bottom
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
and the
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the mate ...
layers. The programmable volume is the GeSbTe volume that is in contact with the bottom electrode. This is the part that can be scaled down with lithography. The thermal time constant of the device is also important. The thermal time constant must be fast enough for GeSbTe to cool rapidly into the amorphous state during RESET but slow enough to allow crystallization to occur during SET state. The thermal time constant depends on the design and material the cell is built. To read, a low current pulse is applied to the device. A small current ensures the material does not heat up. Information stored is read out by measuring the resistance of the device.


Threshold switching

Threshold switching occurs when GeSbTe goes from a high
resistive The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
state to a
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gene ...
state at the threshold field of about 56 V/um. This can be seen from the
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
-
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
(IV) plot, where current is very low in the amorphous state at low voltage until threshold voltage is reached. Current increases rapidly after the voltage snapback. The material is now in the amorphous "ON" state, where the material is still amorphous, but in a pseudo-crystalline electric state. In crystalline state, the IV characteristics is ohmic. There had been debate on whether threshold switching was an electrical or
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
process. There were suggestions that the
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above *Exponential decay, decrease at a rate proportional to value *Expo ...
increase in current at threshold voltage must have been due to generation of carriers that vary exponentially with voltage such as impact
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecul ...
or tunneling.


Nano-timescale phase change

Recently, much research has focused on the material analysis of the phase-change material in an attempt to explain the high speed phase change of GeSbTe. Using
EXAFS Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy ( XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray ...
, it was found that the most matching model for crystalline GeSbTe is a distorted rocksalt lattice and for amorphous a tetrahedral structure. The small change in configuration from distorted rocksalt to tetrahedral suggests that nano-timescale phase change is possible as the major covalent bonds are intact and only the weaker bonds are broken. Using the most possible crystalline and amorphous local structures for GeSbTe, the fact that
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
of crystalline GeSbTe is less than 10% larger than amorphous GeSbTe, and the fact that free energies of both amorphous and crystalline GeSbTe have to be around the same magnitude, it was hypothesized from
density functional theory Density-functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body ...
simulations that the most stable amorphous state was the spinel structure, where Ge occupies tetrahedral positions and Sb and Te occupy octahedral positions, as the ground state energy was the lowest of all the possible configurations. By means of Car-Parrinello
molecular dynamics Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of t ...
simulations this conjecture have been theoretically confirmed.


Nucleation-domination versus growth-domination

Another similar material is
AgInSbTe AgInSbTe, or silver-indium-antimony-tellurium, is a phase change material from the group of chalcogenide glasses, used in rewritable optical discs (such as rewritable CDs) and phase-change memory applications. It is a quaternary compound of silve ...
. It offers higher linear density, but has lower overwrite cycles by 1-2 orders of magnitude. It is used in groove-only recording formats, often in rewritable CDs. AgInSbTe is known as a growth-dominated material while GeSbTe is known as a nucleation-dominated material. In GeSbTe, the nucleation process of crystallization is long with many small crystalline nuclei being formed before a short growth process where the numerous small crystals are joined together. In AgInSbTe, there are only a few nuclei formed in the nucleation stage and these nuclei grow bigger in the longer growth stage such that they eventually form one crystal.


References

{{Glass science Alloys Chalcogenides DVD Germanium compounds Non-oxide glasses Optical materials Antimony compounds Tellurium compounds