Gas exchange
   HOME

TheInfoList



OR:

Gas exchange is the physical process by which gases move passively by
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
, or a biological membrane that forms the boundary between an organism and its extracellular environment. Gases are constantly consumed and produced by cellular and metabolic reactions in most living things, so an efficient system for gas exchange between, ultimately, the interior of the cell(s) and the external environment is required. Small, particularly unicellular organisms, such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
and protozoa, have a high surface-area to volume ratio. In these creatures the gas exchange membrane is typically the
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
. Some small multicellular organisms, such as flatworms, are also able to perform sufficient gas exchange across the skin or cuticle that surrounds their bodies. However, in most larger organisms, which have a small surface-area to volume ratios, specialised structures with convoluted surfaces such as gills, pulmonary alveoli and spongy mesophyll provide the large area needed for effective gas exchange. These convoluted surfaces may sometimes be internalised into the body of the organism. This is the case with the alveoli, which form the inner surface of the mammalian lung, the spongy mesophyll, which is found inside the leaves of some kinds of plant, or the gills of those molluscs that have them, which are found in the mantle cavity. In
aerobic organism Aerobic means "requiring air," in which "air" usually means oxygen. Aerobic may also refer to * Aerobic exercise, prolonged exercise of moderate intensity * Aerobics Aerobics is a form of physical exercise that combines rhythmic aerobic exe ...
s, gas exchange is particularly important for
respiration Respiration may refer to: Biology * Cellular respiration, the process in which nutrients are converted into useful energy in a cell ** Anaerobic respiration, cellular respiration without oxygen ** Maintenance respiration, the amount of cellul ...
, which involves the uptake of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
() and release of
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
(). Conversely, in oxygenic photosynthetic organisms such as most land plants, uptake of carbon dioxide and release of both oxygen and water vapour are the main gas-exchange processes occurring during the day. Other gas-exchange processes are important in less familiar organisms: ''e.g.'' carbon dioxide,
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane on Ea ...
and
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
are exchanged across the cell membrane of methanogenic archaea. In nitrogen fixation by diazotrophic bacteria, and denitrification by
heterotrophic A heterotroph (; ) is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but ...
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
(such as '' Paracoccus denitrificans'' and various pseudomonads), nitrogen gas is exchanged with the environment, being taken up by the former and released into it by the latter, while giant tube worms rely on bacteria to oxidize hydrogen sulfide extracted from their deep sea environment, using dissolved oxygen in the water as an electron acceptor.
Diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
only takes place with a concentration gradient.
Gases Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
will flow from a high concentration to a low concentration. A high
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
concentration in the alveoli and low oxygen concentration in the
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
causes oxygen to move into the capillaries. A high
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
concentration in the capillaries and low
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon mak ...
dioxide concentration in the alveoli causes carbon dioxide to move into the alveoli.


Physical principles of gas-exchange


Diffusion and surface area

The exchange of gases occurs as a result of
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
down a concentration gradient. Gas molecules move from a region in which they are at high concentration to one in which they are at low concentration. Diffusion is a passive process, meaning that no energy is required to power the transport, and it follows
Fick's Law Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can be used to solve for the diffusion coefficient, . Fick's first law can be used to derive his second law which in turn is identical to the diffusion equ ...
: :J = -D \frac In relation to a typical biological system, where two compartments ('inside' and 'outside'), are separated by a membrane barrier, and where a gas is allowed to spontaneously diffuse down its concentration gradient: * ''J'' is the flux, the amount of gas diffusing per unit area of membrane per unit time. Note that this is already scaled for the area of the membrane. * ''D'' is the diffusion coefficient, which will differ from gas to gas, and from membrane to membrane, according to the size of the gas molecule in question, and the nature of the membrane itself (particularly its viscosity,
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
and
hydrophobicity In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, t ...
). * ''φ'' is the concentration of the gas. * ''x'' is the position across the thickness of the membrane. * d''φ''/d''x'' is therefore the concentration gradient across the membrane. If the two compartments are individually well-mixed, then this is simplifies to the difference in concentration of the gas between the inside and outside compartments divided by the thickness of the membrane. * The negative sign indicates that the diffusion is always in the direction that - over time - will destroy the concentration gradient, ''i.e.'' the gas moves from high concentration to low concentration until eventually the inside and outside compartments reach equilibrium. Fig. 1. Fick's Law for gas-exchange surface Gases must first dissolve in a liquid in order to diffuse across a
membrane A membrane is a selective barrier; it allows some things to pass through but stops others. Such things may be molecules, ions, or other small particles. Membranes can be generally classified into synthetic membranes and biological membranes. ...
, so all biological gas exchange systems require a moist environment. In general, the higher the concentration gradient across the gas-exchanging surface, the faster the rate of diffusion across it. Conversely, the thinner the gas-exchanging surface (for the same concentration difference), the faster the gases will diffuse across it. In the equation above, ''J'' is the flux expressed per unit area, so increasing the area will make no difference to its value. However, an increase in the available surface area, will increase the ''amount'' of gas that can diffuse in a given time. This is because the amount of gas diffusing per unit time (d''q''/d''t'') is the product of ''J'' and the area of the gas-exchanging surface, ''A'': :\frac = J A Single-celled organisms such as
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
and
amoeba An amoeba (; less commonly spelled ameba or amœba; plural ''am(o)ebas'' or ''am(o)ebae'' ), often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudop ...
e do not have specialised gas exchange surfaces, because they can take advantage of the high surface area they have relative to their volume. The amount of gas an organism produces (or requires) in a given time will be in rough proportion to the volume of its
cytoplasm In cell biology, the cytoplasm is all of the material within a eukaryotic cell, enclosed by the cell membrane, except for the cell nucleus. The material inside the nucleus and contained within the nuclear membrane is termed the nucleoplasm. ...
. The volume of a unicellular organism is very small, therefore it produces (and requires) a relatively small amount of gas in a given time. In comparison to this small volume, the surface area of its
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
is very large, and adequate for its gas-exchange needs without further modification. However, as an organism increases in size, its surface area and volume do not scale in the same way. Consider an imaginary organism that is a cube of side-length, ''L''. Its volume increases with the cube (''L''3) of its length, but its external surface area increases only with the square (''L''2) of its length. This means the external surface rapidly becomes inadequate for the rapidly increasing gas-exchange needs of a larger volume of cytoplasm. Additionally, the thickness of the surface that gases must cross (d''x'' in Fick's Law) can also be larger in larger organisms: in the case of a single-celled organism, a typical cell membrane is only 10 nm thick; but in larger organisms such as
roundworms The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-parasitic nematodes also known as eelworms. They are a diverse animal phylum inhabiting a broa ...
(Nematoda) the equivalent exchange surface - the cuticle - is substantially thicker at 0.5 μm.


Interaction with circulatory systems

In multicellular organisms therefore, specialised respiratory organs such as gills or lungs are often used to provide the additional surface area for the required rate of gas exchange with the external environment. However the distances between the gas exchanger and the deeper tissues are often too great for diffusion to meet gaseous requirements of these tissues. The gas exchangers are therefore frequently coupled to gas-distributing
circulatory system The blood circulatory system is a system of organs that includes the heart, blood vessels, and blood which is circulated throughout the entire body of a human or other vertebrate. It includes the cardiovascular system, or vascular system, tha ...
s, which transport the gases evenly to all the body tissues regardless of their distance from the gas exchanger. Some multicellular organisms such as flatworms (Platyhelminthes) are relatively large but very thin, allowing their outer body surface to act as a gas exchange surface without the need for a specialised gas exchange organ. Flatworms therefore lack gills or lungs, and also lack a circulatory system. Other multicellular organisms such as sponges (Porifera) have an inherently high surface area, because they are very porous and/or branched. Sponges do not require a circulatory system or specialised gas exchange organs, because their feeding strategy involves one-way pumping of water through their porous bodies using flagellated collar cells. Each cell of the sponge's body is therefore exposed to a constant flow of fresh oxygenated water. They can therefore rely on diffusion across their cell membranes to carry out the gas exchange needed for respiration. In organisms that have circulatory systems associated with their specialized gas-exchange surfaces, a great variety of systems are used for the interaction between the two. In a countercurrent flow system, air (or, more usually, the water containing dissolved air) is drawn in the ''opposite'' direction to the flow of blood in the gas exchanger. A countercurrent system such as this maintains a steep concentration gradient along the length of the gas-exchange surface (see lower diagram in Fig. 2). This is the situation seen in the
gills A gill () is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are ...
of fish and many other aquatic creatures. The gas-containing environmental water is drawn unidirectionally across the gas-exchange surface, with the blood-flow in the gill capillaries beneath flowing in the opposite direction. Although this theoretically allows almost complete transfer of a respiratory gas from one side of the exchanger to the other, in fish less than 80% of the oxygen in the water flowing over the gills is generally transferred to the blood. Alternative arrangements are cross current systems found in birds. and dead-end air-filled sac systems found in the lungs of mammals. In a cocurrent flow system, the blood and gas (or the fluid containing the gas) move in the same direction through the gas exchanger. This means the magnitude of the gradient is variable along the length of the gas-exchange surface, and the exchange will eventually stop when an equilibrium has been reached (see upper diagram in Fig. 2). Cocurrent flow gas exchange systems are not known to be used in nature.


Mammals

The gas exchanger in mammals is internalized to form lungs, as it is in most of the larger land animals. Gas exchange occurs in microscopic dead-end air-filled sacs called alveoli, where a very thin membrane (called the blood-air barrier) separates the blood in the alveolar capillaries (in the walls of the alveoli) from the alveolar air in the sacs.


Exchange membrane

The membrane across which gas exchange takes place in the alveoli (i.e. the blood-air barrier) is extremely thin (in humans, on average, 2.2 μm thick). It consists of the alveolar epithelial cells, their basement membranes and the
endothelial cells The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel ...
of the pulmonary capillaries (Fig. 4). The large surface area of the membrane comes from the folding of the membrane into about 300 million alveoli, with diameters of approximately 75-300 μm each. This provides an extremely large surface area (approximately 145 m2) across which gas exchange can occur.


Alveolar air

Air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
is brought to the alveoli in small doses (called the
tidal volume Tidal volume (symbol VT or TV) is the volume of air moved into or out of the lungs during a normal breath. In a healthy, young human adult, tidal volume is approximately 500 ml per inspiration or 7 ml/kg of body mass. Mechanical vent ...
), by breathing in ( inhalation) and out (
exhalation Exhalation (or expiration) is the flow of the breath out of an organism. In animals, it is the movement of air from the lungs out of the airways, to the external environment during breathing. This happens due to elastic properties of the lungs, ...
) through the respiratory airways, a set of relatively narrow and moderately long tubes which start at the nose or mouth and end in the alveoli of the lungs in the chest. Air moves in and out through the same set of tubes, in which the flow is in one direction during inhalation, and in the opposite direction during exhalation. During each inhalation, at rest, approximately 500 ml of fresh air flows in through the nose. It is warmed and moistened as it flows through the nose and pharynx. By the time it reaches the trachea the inhaled air's temperature is 37 °C and it is saturated with water vapor. On arrival in the alveoli it is diluted and thoroughly mixed with the approximately 2.5–3.0 liters of air that remained in the alveoli after the last exhalation. This relatively large volume of air that is semi-permanently present in the alveoli throughout the breathing cycle is known as the
functional residual capacity Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm ...
(FRC). At the beginning of inhalation the airways are filled with unchanged alveolar air, left over from the last exhalation. This is the dead space volume, which is usually about 150 ml. It is the first air to re-enter the alveoli during inhalation. Only after the dead space air has returned to the alveoli does the remainder of the tidal volume (500 ml - 150 ml = 350 ml) enter the alveoli. The entry of such a small volume of fresh air with each inhalation, ensures that the composition of the FRC hardly changes during the breathing cycle (Fig. 5). The alveolar
partial pressure of oxygen Blood gas tension refers to the partial pressure of gases in blood. There are several significant purposes for measuring gas tension. The most common gas tensions measured are oxygen tension (PxO2), carbon dioxide tension (PxCO2) and carbon monox ...
remains very close to 13–14  kPa (100 mmHg), and the partial pressure of carbon dioxide varies minimally around 5.3 kPa (40 mmHg) throughout the breathing cycle (of inhalation and exhalation). The corresponding partial pressures of oxygen and carbon dioxide in the ambient (dry) air at sea level are 21 kPa (160 mmHg) and 0.04 kPa (0.3 mmHg) respectively. This alveolar air, which constitutes the FRC, completely surrounds the blood in the alveolar capillaries (Fig. 6). Gas exchange in mammals occurs between this alveolar air (which differs significantly from fresh air) and the blood in the alveolar capillaries. The gases on either side of the gas exchange membrane equilibrate by simple diffusion. This ensures that the partial pressures of oxygen and carbon dioxide in the blood leaving the alveolar capillaries, and ultimately circulates throughout the body, are the same as those in the FRC. The marked difference between the composition of the alveolar air and that of the ambient air can be maintained because the
functional residual capacity Functional residual capacity (FRC) is the volume of air present in the lungs at the end of passive expiration. At FRC, the opposing elastic recoil forces of the lungs and chest wall are in equilibrium and there is no exertion by the diaphragm ...
is contained in dead-end sacs connected to the outside air by long, narrow, tubes (the airways: nose, pharynx, larynx,
trachea The trachea, also known as the windpipe, is a cartilaginous tube that connects the larynx to the bronchi of the lungs, allowing the passage of air, and so is present in almost all air- breathing animals with lungs. The trachea extends from the ...
,
bronchi A bronchus is a passage or airway in the lower respiratory tract that conducts air into the lungs. The first or primary bronchi pronounced (BRAN-KAI) to branch from the trachea at the carina are the right main bronchus and the left main bronchus. ...
and their branches and sub-branches down to the bronchioles). This anatomy, and the fact that the lungs are not emptied and re-inflated with each breath, provides mammals with a "portable atmosphere", whose composition differs significantly from the present-day ambient air. The composition of the air in the FRC is carefully monitored, by measuring the partial pressures of oxygen and carbon dioxide in the arterial blood. If either gas pressure deviates from normal, reflexes are elicited that change the rate and depth of breathing in such a way that normality is restored within seconds or minutes.


Pulmonary circulation

All the blood returning from the body tissues to the right side of the
heart The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to t ...
flows through the alveolar capillaries before being pumped around the body again. On its passage through the lungs the blood comes into close contact with the alveolar air, separated from it by a very thin diffusion membrane which is only, on average, about 2 μm thick. The gas pressures in the blood will therefore rapidly equilibrate with those in the alveoli, ensuring that the arterial blood that circulates to all the tissues throughout the body has an
oxygen tension Blood gas tension refers to the partial pressure of gases in blood. There are several significant purposes for measuring gas tension. The most common gas tensions measured are oxygen tension (PxO2), carbon dioxide tension (PxCO2) and carbon monox ...
of 13−14 kPa (100 mmHg), and a carbon dioxide tension of 5.3 kPa (40 mmHg). These arterial partial pressures of oxygen and carbon dioxide are homeostatically controlled. A rise in the arterial P_, and, to a lesser extent, a fall in the arterial P_, will reflexly cause deeper and faster breathing until the blood gas tensions return to normal. The converse happens when the carbon dioxide tension falls, or, again to a lesser extent, the oxygen tension rises: the rate and depth of breathing are reduced until blood gas normality is restored. Since the blood arriving in the alveolar capillaries has a P_ of, on average, 6 kPa (45 mmHg), while the pressure in the alveolar air is 13 kPa (100 mmHg), there will be a net diffusion of oxygen into the capillary blood, changing the composition of the 3 liters of alveolar air slightly. Similarly, since the blood arriving in the alveolar capillaries has a P_ of also about 6 kPa (45 mmHg), whereas that of the alveolar air is 5.3 kPa (40 mmHg), there is a net movement of carbon dioxide out of the capillaries into the alveoli. The changes brought about by these net flows of individual gases into and out of the functional residual capacity necessitate the replacement of about 15% of the alveolar air with ambient air every 5 seconds or so. This is very tightly controlled by the continuous monitoring of the arterial blood gas tensions (which accurately reflect partial pressures of the respiratory gases in the alveolar air) by the aortic bodies, the carotid bodies, and the blood gas and pH sensor on the anterior surface of the medulla oblongata in the brain. There are also oxygen and carbon dioxide sensors in the lungs, but they primarily determine the diameters of the bronchioles and
pulmonary capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
, and are therefore responsible for directing the flow of air and blood to different parts of the lungs. It is only as a result of accurately maintaining the composition of the 3 liters alveolar air that with each breath some carbon dioxide is discharged into the atmosphere and some oxygen is taken up from the outside air. If more carbon dioxide than usual has been lost by a short period of hyperventilation, respiration will be slowed down or halted until the alveolar P_ has returned to 5.3 kPa (40 mmHg). It is therefore strictly speaking untrue that the primary function of the respiratory system is to rid the body of carbon dioxide "waste". In fact the total concentration of carbon dioxide in arterial blood is about 26 mM (or 58 ml per 100 ml), compared to the concentration of oxygen in saturated arterial blood of about 9 mM (or 20 ml per 100 ml blood). This large concentration of carbon dioxide plays a pivotal role in the determination and maintenance of the pH of the extracellular fluids. The carbon dioxide that is breathed out with each breath could probably be more correctly be seen as a byproduct of the body's extracellular fluid
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
and pH homeostats If these homeostats are compromised, then a respiratory acidosis, or a
respiratory alkalosis Respiratory alkalosis is a medical condition in which increased respiration elevates the blood pH beyond the normal range (7.35–7.45) with a concurrent reduction in arterial levels of carbon dioxide. This condition is one of the four primary dis ...
will occur. In the long run these can be compensated by renal adjustments to the H+ and HCO3 concentrations in the plasma; but since this takes time, the hyperventilation syndrome can, for instance, occur when agitation or anxiety cause a person to breathe fast and deeply thus blowing off too much CO2 from the blood into the outside air, precipitating a set of distressing symptoms which result from an excessively high pH of the extracellular fluids. Oxygen has a very low solubility in water, and is therefore carried in the blood loosely combined with hemoglobin. The oxygen is held on the hemoglobin by four ferrous iron-containing
heme Heme, or haem (pronounced / hi:m/ ), is a precursor to hemoglobin, which is necessary to bind oxygen in the bloodstream. Heme is biosynthesized in both the bone marrow and the liver. In biochemical terms, heme is a coordination complex "consis ...
groups per hemoglobin molecule. When all the heme groups carry one O2 molecule each the blood is said to be "saturated" with oxygen, and no further increase in the partial pressure of oxygen will meaningfully increase the oxygen concentration of the blood. Most of the carbon dioxide in the blood is carried as HCO3 ions in the plasma. However the conversion of dissolved CO2 into HCO3 (through the addition of water) is too slow for the rate at which the blood circulates through the tissues on the one hand, and alveolar capillaries on the other. The reaction is therefore catalyzed by carbonic anhydrase, an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
inside the
red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
s. The reaction can go in either direction depending on the prevailing partial pressure of carbon dioxide. A small amount of carbon dioxide is carried on the protein portion of the hemoglobin molecules as carbamino groups. The total concentration of carbon dioxide (in the form of bicarbonate ions, dissolved CO2, and carbamino groups) in arterial blood (i.e. after it has equilibrated with the alveolar air) is about 26 mM (or 58 ml/100 ml), compared to the concentration of oxygen in saturated arterial blood of about 9 mM (or 20 ml/100 ml blood).


Other vertebrates


Fish

The dissolved oxygen content in fresh water is approximately 8–10 milliliters per liter compared to that of air which is 210 milliliters per liter. Water is 800 times more dense than air and 100 times more viscous. Therefore, oxygen has a diffusion rate in air 10,000 times greater than in water. The use of sac-like lungs to remove oxygen from water would therefore not be efficient enough to sustain life. Rather than using lungs, gaseous exchange takes place across the surface of highly vascularized gills. Gills are specialised organs containing filaments, which further divide into
lamellae Lamella (plural lamellae) means a small plate or flake in Latin, and in English may refer to: Biology * Lamella (mycology), a papery rib beneath a mushroom cap * Lamella (botany) * Lamella (surface anatomy), a plate-like structure in an animal * ...
. The lamellae contain
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
that provide a large surface area and short diffusion distances, as their walls are extremely thin. Gill rakers are found within the exchange system in order to filter out food, and keep the gills clean. Gills use a countercurrent flow system that increases the efficiency of oxygen-uptake (and waste gas loss). Oxygenated water is drawn in through the mouth and passes over the gills in one direction while blood flows through the lamellae in the opposite direction. This countercurrent maintains steep concentration gradients along the entire length of each capillary (see the diagram in the "Interaction with circulatory systems" section above). Oxygen is able to continually diffuse down its gradient into the blood, and the carbon dioxide down its gradient into the water. The deoxygenated water will eventually pass out through the operculum (gill cover). Although countercurrent exchange systems theoretically allow an almost complete transfer of a respiratory gas from one side of the exchanger to the other, in fish less than 80% of the oxygen in the water flowing over the gills is generally transferred to the blood.


Amphibians

Amphibians have three main organs involved in gas exchange: the lungs, the skin, and the gills, which can be used singly or in a variety of different combinations. The relative importance of these structures differs according to the age, the environment and species of the amphibian. The skin of amphibians and their larvae is highly vascularised, leading to relatively efficient gas exchange when the skin is moist. The larvae of amphibians, such as the pre-metamorphosis tadpole stage of
frog A frog is any member of a diverse and largely carnivorous group of short-bodied, tailless amphibians composing the order Anura (ανοὐρά, literally ''without tail'' in Ancient Greek). The oldest fossil "proto-frog" ''Triadobatrachus'' is ...
s, also have external
gills A gill () is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are ...
. The gills are absorbed into the body during metamorphosis, after which the lungs will then take over. The lungs are usually simpler than in the other land vertebrates, with few internal septa and larger alveoli; however, toads, which spend more time on land, have a larger alveolar surface with more developed lungs. To increase the rate of gas exchange by diffusion, amphibians maintain the concentration gradient across the respiratory surface using a process called
buccal pumping Buccal pumping is "breathing with one's cheeks": a method of ventilation used in respiration in which the animal moves the floor of its mouth in a rhythmic manner that is externally apparent.Brainerd, E. L. (1999). New perspectives on the evolutio ...
. The lower floor of the mouth is moved in a "pumping" manner, which can be observed by the naked eye.


Reptiles

All reptiles breathe using lungs. In
squamate Squamata (, Latin ''squamatus'', 'scaly, having scales') is the largest order of reptiles, comprising lizards, snakes, and amphisbaenians (worm lizards), which are collectively known as squamates or scaled reptiles. With over 10,900 species, it ...
s (the lizards and snakes) ventilation is driven by the axial musculature, but this musculature is also used during movement, so some squamates rely on
buccal pumping Buccal pumping is "breathing with one's cheeks": a method of ventilation used in respiration in which the animal moves the floor of its mouth in a rhythmic manner that is externally apparent.Brainerd, E. L. (1999). New perspectives on the evolutio ...
to maintain gas exchange efficiency. Due to the rigidity of turtle and tortoise shells, significant expansion and contraction of the chest is difficult. Turtles and tortoises depend on muscle layers attached to their shells, which wrap around their lungs to fill and empty them. Some aquatic turtles can also pump water into a highly vascularised mouth or cloaca to achieve gas-exchange. Crocodiles have a structure similar to the mammalian diaphragm - the diaphragmaticus - but this muscle helps create a unidirectional flow of air through the lungs rather than a tidal flow: this is more similar to the air-flow seen in birds than that seen in mammals. During inhalation, the diaphragmaticus pulls the liver back, inflating the lungs into the space this creates. Air flows into the lungs from the bronchus during inhalation, but during exhalation, air flows out of the lungs into the bronchus by a different route: this one-way movement of gas is achieved by aerodynamic valves in the airways.


Birds

Birds have lungs but no diaphragm. They rely mostly on air sacs for
ventilation Ventilation may refer to: * Ventilation (physiology), the movement of air between the environment and the lungs via inhalation and exhalation ** Mechanical ventilation, in medicine, using artificial methods to assist breathing *** Ventilator, a m ...
. These air sacs do not play a direct role in gas exchange, but help to move air unidirectionally across the gas exchange surfaces in the lungs. During inhalation, fresh air is taken from the trachea down into the posterior air sacs and into the parabronchi which lead from the posterior air sacs into the lung. The air that enters the lungs joins the air which is already in the lungs, and is drawn forward across the gas exchanger into anterior air sacs. During exhalation, the posterior air sacs force air into the same parabronchi of the lungs, flowing in the same direction as during inhalation, allowing continuous gas exchange irrespective of the breathing cycle. Air exiting the lungs during exhalation joins the air being expelled from the anterior air sacs (both consisting of "spent air" that has passed through the gas exchanger) entering the trachea to be exhaled (Fig. 10). Selective
bronchoconstriction Bronchoconstriction is the constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, with consequent coughing, wheezing, and shortness of breath. Causes The condition has a number of causes, the most common be ...
at the various bronchial branch points ensures that the air does not ebb and flow through the bronchi during inhalation and exhalation, as it does in mammals, but follows the paths described above. The unidirectional airflow through the parabronchi exchanges respiratory gases with a ''crosscurrent'' blood flow (Fig. 9). The partial pressure of O2 (P_) in the parabronchioles declines along their length as O2 diffuses into the blood. The capillaries leaving the exchanger near the entrance of airflow take up more O2 than capillaries leaving near the exit end of the parabronchi. When the contents of all capillaries mix, the final P_ of the mixed pulmonary venous blood is higher than that of the exhaled air, but lower than that of the inhaled air.


Plants

Gas exchange in plants is dominated by the roles of carbon dioxide, oxygen and
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous p ...
. is the only carbon source for
autotroph An autotroph or primary producer is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide,Morris, J. et al. (2019). "Biology: How Life Wo ...
ic growth by photosynthesis, and when a plant is actively photosynthesising in the light, it will be taking up carbon dioxide, and losing water vapor and oxygen. At night, plants respire, and gas exchange partly reverses: water vapor is still lost (but to a smaller extent), but oxygen is now taken up and carbon dioxide released. Plant gas exchange occurs mostly through the leaves. Gas exchange between a leaf and the atmosphere occurs simultaneously through two pathways: 1) epidermal cells and cuticular waxes (usually referred as ' cuticle') which are always present at each leaf surface, and 2) stomata, which typically control the majority of the exchange. Gases enter into the photosynthetic tissue of the leaf through dissolution onto the moist surface of the palisade and spongy mesophyll cells. The spongy mesophyll cells are loosely packed, allowing for an increased surface area, and consequently an increased rate of gas-exchange. Uptake of carbon dioxide necessarily results in some loss of water vapor, because both molecules enter and leave by the same stomata, so plants experience a gas exchange dilemma: gaining enough without losing too much water. Therefore, water loss from other parts of the leaf is minimised by the waxy cuticle on the leaf's epidermis. The size of a stoma is regulated by the opening and closing of its two guard cells: the turgidity of these cells determines the state of the stomatal opening, and this itself is regulated by water stress. Plants showing
crassulacean acid metabolism Crassulacean acid metabolism, also known as CAM photosynthesis, is a carbon fixation pathway that evolved in some plants as an adaptation to arid conditions that allows a plant to photosynthesize during the day, but only exchange gases at night. ...
are drought-tolerant xerophytes and perform almost all their gas-exchange at night, because it is only during the night that these plants open their stomata. By opening the stomata only at night, the water vapor loss associated with carbon dioxide uptake is minimised. However, this comes at the cost of slow growth: the plant has to store the carbon dioxide in the form of malic acid for use during the day, and it cannot store unlimited amounts. Gas exchange measurements are important tools in plant science: this typically involves sealing the plant (or part of a plant) in a chamber and measuring changes in the concentration of carbon dioxide and water vapour with an infrared gas analyzer. If the environmental conditions ( humidity, concentration, light and
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
) are fully controlled, the measurements of uptake and water release reveal important information about the assimilation and transpiration rates. The intercellular concentration reveals important information about the photosynthetic condition of the plants. Simpler methods can be used in specific circumstances: hydrogencarbonate indicator can be used to monitor the consumption of in a solution containing a single plant leaf at different levels of light intensity,BBC Bitesize - GCSE Biology - Gas exchange in plants
/ref> and oxygen generation by the pondweed ''
Elodea ''Elodea'' is a genus of 6 species of aquatic plants often called the waterweeds described as a genus in 1803. Classified in the frog’s-bit family ( Hydrocharitaceae), ''Elodea'' is native to the Americas and is also widely used as aquarium ve ...
'' can be measured by simply collecting the gas in a submerged test-tube containing a small piece of the plant.


Invertebrates

The mechanism of gas exchange in invertebrates depends their size, feeding strategy, and habitat (aquatic or terrestrial). The
sponge Sponges, the members of the phylum Porifera (; meaning 'pore bearer'), are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate throug ...
s (Porifera) are sessile creatures, meaning they are unable to move on their own and normally remain attached to their substrate. They obtain nutrients through the flow of water across their cells, and they exchange gases by simple diffusion across their cell membranes. Pores called ostia draw water into the sponge and the water is subsequently circulated through the sponge by cells called choanocytes which have hair-like structures that move the water through the sponge. The cnidarians include corals,
sea anemones Sea anemones are a group of predatory marine invertebrates of the order Actiniaria. Because of their colourful appearance, they are named after the ''Anemone'', a terrestrial flowering plant. Sea anemones are classified in the phylum Cnidaria, ...
,
jellyfish Jellyfish and sea jellies are the informal common names given to the medusa-phase of certain gelatinous members of the subphylum Medusozoa, a major part of the phylum Cnidaria. Jellyfish are mainly free-swimming marine animals with umbrell ...
and hydras. These animals are always found in aquatic environments, ranging from fresh water to salt water. They do not have any dedicated
respiratory organs The respiratory system (also respiratory apparatus, ventilatory system) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies gre ...
; instead, every cell in their body can absorb oxygen from the surrounding water, and release waste gases to it. One key disadvantage of this feature is that cnidarians can die in environments where water is stagnant, as they deplete the water of its
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
supply. Corals often form symbiosis with other organisms, particularly photosynthetic dinoflagellates. In this symbiosis, the coral provides shelter and the other organism provides nutrients to the coral, including oxygen. The
roundworms The nematodes ( or grc-gre, Νηματώδη; la, Nematoda) or roundworms constitute the phylum Nematoda (also called Nemathelminthes), with plant-parasitic nematodes also known as eelworms. They are a diverse animal phylum inhabiting a broa ...
(Nematoda), flatworms (Platyhelminthes), and many other small invertebrate animals living in aquatic or otherwise wet habitats do not have a dedicated gas-exchange surface or circulatory system. They instead rely on
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
of and directly across their cuticle. The cuticle is the
semi-permeable Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
outermost layer of their bodies. Other aquatic invertebrates such as most molluscs (Mollusca) and larger
crustacean Crustaceans (Crustacea, ) form a large, diverse arthropod taxon which includes such animals as decapods, seed shrimp, branchiopods, fish lice, krill, remipedes, isopods, barnacles, copepods, amphipods and mantis shrimp. The crustacean group can ...
s (Crustacea) such as lobsters, have gills analogous to those of fish, which operate in a similar way. Unlike the invertebrates groups mentioned so far,
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three ...
s are usually terrestrial, and exchange gases across a moist surface in direct contact with the atmosphere, rather than in contact with surrounding water. The insect's
exoskeleton An exoskeleton (from Greek ''éxō'' "outer" and ''skeletós'' "skeleton") is an external skeleton that supports and protects an animal's body, in contrast to an internal skeleton (endoskeleton) in for example, a human. In usage, some of the ...
is impermeable to gases, including water vapor, so they have a more specialised gas exchange system, requiring gases to be directly transported to the tissues via a complex network of tubes. This respiratory system is separated from their circulatory system. Gases enter and leave the body through openings called spiracles, located laterally along the thorax and
abdomen The abdomen (colloquially called the belly, tummy, midriff, tucky or stomach) is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the to ...
. Similar to plants, insects are able to control the opening and closing of these spiracles, but instead of relying on turgor pressure, they rely on muscle contractions. These contractions result in an insect's abdomen being pumped in and out. The spiracles are connected to tubes called tracheae, which branch repeatedly and ramify into the insect's body. These branches terminate in specialised tracheole cells which provides a thin, moist surface for efficient gas exchange, directly with cells.Klowden, M. J. 2007. Physiological systems in insects. Elsevier/Academic Press. pp. 440-442 The other main group of terrestrial
arthropod Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chiti ...
, the
arachnid Arachnida () is a class of joint-legged invertebrate animals (arthropods), in the subphylum Chelicerata. Arachnida includes, among others, spiders, scorpions, ticks, mites, pseudoscorpions, harvestmen, camel spiders, whip spiders and vinegar ...
s (
spider Spiders ( order Araneae) are air-breathing arthropods that have eight legs, chelicerae with fangs generally able to inject venom, and spinnerets that extrude silk. They are the largest order of arachnids and rank seventh in total species ...
s,
scorpion Scorpions are predatory arachnids of the order Scorpiones. They have eight legs, and are easily recognized by a pair of grasping pincers and a narrow, segmented tail, often carried in a characteristic forward curve over the back and always en ...
, mites, and their relatives) typically perform gas exchange with a book lung.


Summary of main gas exchange systems


See also

*


References

{{authority control Biological processes *