Galois cohomology
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Galois cohomology is the study of the
group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology ...
of Galois modules, that is, the application of
homological algebra Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topolo ...
to
modules Broadly speaking, modularity is the degree to which a system's components may be separated and recombined, often with the benefit of flexibility and variety in use. The concept of modularity is used primarily to reduce complexity by breaking a s ...
for
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
s. A Galois group ''G'' associated to a
field extension In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
''L''/''K'' acts in a natural way on some
abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is comm ...
s, for example those constructed directly from ''L'', but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an
exact functor In mathematics, particularly homological algebra, an exact functor is a functor that preserves short exact sequences. Exact functors are convenient for algebraic calculations because they can be directly applied to presentations of objects. Mu ...
.


History

The current theory of Galois cohomology came together around 1950, when it was realised that the Galois cohomology of ideal class groups in
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic o ...
was one way to formulate
class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is cre ...
, at the time it was in the process of ridding itself of connections to
L-function In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may giv ...
s. Galois cohomology makes no assumption that Galois groups are abelian groups, so this was a non-abelian theory. It was formulated abstractly as a theory of
class formation In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field t ...
s. Two developments of the 1960s turned the position around. Firstly, Galois cohomology appeared as the foundational layer of étale cohomology theory (roughly speaking, the theory as it applies to zero-dimensional schemes). Secondly,
non-abelian class field theory In mathematics, non-abelian class field theory is a catchphrase, meaning the extension of the results of class field theory, the relatively complete and classical set of results on abelian extensions of any number field ''K'', to the general Galo ...
was launched as part of the
Langlands philosophy In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic ...
. The earliest results identifiable as Galois cohomology had been known long before, in algebraic number theory and the arithmetic of elliptic curves. The normal basis theorem implies that the first cohomology group of the additive group of ''L'' will vanish; this is a result on general field extensions, but was known in some form to
Richard Dedekind Julius Wilhelm Richard Dedekind (6 October 1831 – 12 February 1916) was a German mathematician who made important contributions to number theory, abstract algebra (particularly ring theory), and the axiomatic foundations of arithmetic. His ...
. The corresponding result for the
multiplicative group In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referre ...
is known as Hilbert's Theorem 90, and was known before 1900. Kummer theory was another such early part of the theory, giving a description of the connecting homomorphism coming from the ''m''-th power map. In fact, for a while the multiplicative case of a 1-
cocycle In mathematics a cocycle is a closed cochain. Cocycles are used in algebraic topology to express obstructions (for example, to integrating a differential equation on a closed manifold). They are likewise used in group cohomology. In autonomous ...
for groups that are not necessarily cyclic was formulated as the solubility of Noether's equations, named for Emmy Noether; they appear under this name in
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing l ...
's treatment of Galois theory, and may have been folklore in the 1920s. The case of 2-cocycles for the multiplicative group is that of the
Brauer group Brauer or Bräuer is a surname of German origin, meaning "brewer". Notable people with the name include:- * Alfred Brauer (1894–1985), German-American mathematician, brother of Richard * Andreas Brauer (born 1973), German film producer * Arik ...
, and the implications seem to have been well known to algebraists of the 1930s. In another direction, that of torsors, these were already implicit in the
infinite descent In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold f ...
arguments of Fermat for
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. I ...
s. Numerous direct calculations were done, and the proof of the
Mordell–Weil theorem In mathematics, the Mordell–Weil theorem states that for an abelian variety A over a number field K, the group A(K) of k-rational point, ''K''-rational points of A is a finitely-generated abelian group, called the Mordell–Weil group. The case ...
had to proceed by some surrogate of a finiteness proof for a particular ''H''1 group. The 'twisted' nature of objects over fields that are not algebraically closed, which are not
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
but become so over the algebraic closure, was also known in many cases linked to other algebraic groups (such as
quadratic form In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example, :4x^2 + 2xy - 3y^2 is a quadratic form in the variables and . The coefficients usually belong to ...
s,
simple algebra In abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a sim ...
s, Severi–Brauer varieties), in the 1930s, before the general theory arrived. The needs of number theory were in particular expressed by the requirement to have control of a
local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each ...
for Galois cohomology. This was formulated by means of results in class field theory, such as Hasse's norm theorem. In the case of elliptic curves, it led to the key definition of the
Tate–Shafarevich group In arithmetic geometry, the Tate–Shafarevich group of an abelian variety (or more generally a group scheme) defined over a number field consists of the elements of the Weil–Châtelet group that become trivial in all of the completions of ...
in the Selmer group, which is the obstruction to the success of a local-global principle. Despite its great importance, for example in the Birch and Swinnerton-Dyer conjecture, it proved very difficult to get any control of it, until results of Karl Rubin gave a way to show in some cases it was finite (a result generally believed, since its conjectural order was predicted by an L-function formula). The other major development of the theory, also involving
John Tate John Tate may refer to: * John Tate (mathematician) (1925–2019), American mathematician * John Torrence Tate Sr. (1889–1950), American physicist * John Tate (Australian politician) (1895–1977) * John Tate (actor) (1915–1979), Australian a ...
was the Tate–Poitou duality result. Technically speaking, ''G'' may be a
profinite group In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. ...
, in which case the definitions need to be adjusted to allow only continuous cochains.


References

* , translation of ''Cohomologie Galoisienne'', Springer-Verlag Lecture Notes 5 (1964). * * Algebraic number theory Class field theory Cohomology theories Galois theory Homological algebra {{numtheory-stub