Gallium(III) arsenide
   HOME

TheInfoList



OR:

Gallium Gallium is a chemical element with the Symbol (chemistry), symbol Ga and atomic number 31. Discovered by France, French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in boron group, group 13 of the periodic table and is similar to ...
arsenide (GaAs) is a
III-V Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because o ...
direct band gap
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
frequency
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s,
monolithic microwave integrated circuit Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as ...
s,
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
light-emitting diode A light-emitting diode (LED) is a semiconductor Electronics, device that Light#Light sources, emits light when Electric current, current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy i ...
s,
laser diode The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with ...
s,
solar cells A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
and optical windows. GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors, including
indium gallium arsenide Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy ( chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are ( group III) elements of the periodic table w ...
, aluminum gallium arsenide and others.


Preparation and chemistry

In the compound, gallium has a +3
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. Gallium arsenide single crystals can be prepared by three industrial processes: * The vertical gradient freeze (VGF) process. * Crystal growth using a horizontal zone furnace in the Bridgman-Stockbarger technique, in which gallium and arsenic vapors react, and free molecules deposit on a seed crystal at the cooler end of the furnace. * Liquid encapsulated Czochralski (LEC) growth is used for producing high-purity single crystals that can exhibit semi-insulating characteristics (see below). Most GaAs wafers are produced using this process. Alternative methods for producing films of GaAs include: * VPE reaction of gaseous gallium metal and
arsenic trichloride Arsenic trichloride is an inorganic compound with the formula AsCl3, also known as arsenous chloride or butter of arsenic. This poisonous oil is colourless, although impure samples may appear yellow. It is an intermediate in the manufacture of ...
: 2 Ga + 2 → 2 GaAs + 3 * MOCVD reaction of trimethylgallium and
arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications ...
: + → GaAs + 3 *
Molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors, and it is considered one of the fundamental tools for the dev ...
(MBE) of
gallium Gallium is a chemical element with the Symbol (chemistry), symbol Ga and atomic number 31. Discovered by France, French chemist Paul-Émile Lecoq de Boisbaudran in 1875, Gallium is in boron group, group 13 of the periodic table and is similar to ...
and
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, b ...
: 4 Ga + → 4 GaAs or 2 Ga + → 2 GaAs Oxidation of GaAs occurs in air, degrading performance of the semiconductor. The surface can be passivated by depositing a cubic gallium(II) sulfide layer using a tert-butyl gallium sulfide compound such as (.


Semi-insulating crystals

In the presence of excess arsenic, GaAs
boules ''Boules'' () is a collective name for a wide range of games similar to bowls and bocce (In French: jeu or jeux, in Croatian: boćanje and in Italian: gioco or giochi) in which the objective is to throw or roll heavy balls (called in France, ...
grow with
crystallographic defect A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell para ...
s; specifically, arsenic antisite defects (an arsenic atom at a gallium atom site within the crystal lattice). The electronic properties of these defects (interacting with others) cause the
Fermi level The Fermi level of a solid-state body is the thermodynamic work required to add one electron to the body. It is a thermodynamic quantity usually denoted by ''µ'' or ''E''F for brevity. The Fermi level does not include the work required to remove ...
to be pinned to near the center of the band gap, so that this GaAs crystal has very low concentration of electrons and holes. This low carrier concentration is similar to an intrinsic (perfectly undoped) crystal, but much easier to achieve in practice. These crystals are called "semi-insulating", reflecting their high resistivity of 107–109 Ω·cm (which is quite high for a semiconductor, but still much lower than a true insulator like glass).McCluskey, Matthew D. and Haller, Eugene E. (2012) ''Dopants and Defects in Semiconductors'', pp. 41 and 66,


Etching

Wet etching of GaAs industrially uses an oxidizing agent such as
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
or
bromine Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest element in group 17 of the periodic table ( halogens) and is a volatile red-brown liquid at room temperature that evaporates readily to form a simi ...
water, and the same strategy has been described in a patent relating to processing scrap components containing GaAs where the is complexed with a hydroxamic acid ("HA"), for example: :GaAs + + "HA" → "GaA" complex + + 4 This reaction produces
arsenic acid Arsenic acid or trihydrogen arsenate is the chemical compound with the formula . More descriptively written as , this colorless acid is the arsenic analogue of phosphoric acid. Arsenate and phosphate salts behave very similarly. Arsenic acid as su ...
.


Electronics


GaAs digital logic

GaAs can be used for various transistor types: 'Clear search' to see pages * Metal–semiconductor field-effect transistor (MESFET) * High-electron-mobility transistor (HEMT) *
Junction field-effect transistor The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers. ...
(JFET) * Heterojunction bipolar transistor (HBT) *
Metal–oxide–semiconductor field-effect transistor The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
(MOSFET) The HBT can be used in integrated injection logic (I2L). The earliest GaAs logic gate used
Buffered FET Logic Buffer may refer to: Science * Buffer gas, an inert or nonflammable gas * Buffer solution, a solution used to prevent changes in pH * Buffering agent, the weak acid or base in a buffer solution * Lysis buffer, in cell biology * Metal ion buffer ...
(BFL). From to 1995 the main logic families used were: * Source-coupled FET logic (SCFL) fastest and most complex, (used by TriQuint & Vitesse) * Capacitor–diode FET logic (CDFL) (used by Cray for Cray-3) *
Direct-coupled FET logic Direct coupled or Direct-coupled may refer to: * Direct-coupled amplifier * Direct-coupled transistor logic * Direct coupled (applied to an engine An engine or motor is a machine designed to convert one or more forms of energy into mechanical ...
(DCFL) simplest and lowest power (used by Vitesse for VLSI gate arrays)


Comparison with silicon for electronics


GaAs advantages

Some electronic properties of gallium arsenide are superior to those of
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
. It has a higher saturated electron velocity and higher
electron mobility In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobil ...
, allowing gallium arsenide transistors to function at frequencies in excess of 250 GHz. GaAs devices are relatively insensitive to overheating, owing to their wider energy band gap, and they also tend to create less
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference aris ...
(disturbance in an electrical signal) in electronic circuits than silicon devices, especially at high frequencies. This is a result of higher carrier mobilities and lower resistive device parasitics. These superior properties are compelling reasons to use GaAs circuitry in
mobile phone A mobile phone, cellular phone, cell phone, cellphone, handphone, hand phone or pocket phone, sometimes shortened to simply mobile, cell, or just phone, is a portable telephone that can make and receive calls over a radio frequency link whi ...
s,
satellite A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioiso ...
communications, microwave point-to-point links and higher frequency
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, Marine radar, ships, spacecraft, guided missiles, motor v ...
systems. It is also used in the manufacture of Gunn diodes for the generation of
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
s. Another advantage of GaAs is that it has a direct band gap, which means that it can be used to absorb and emit light efficiently. Silicon has an
indirect band gap In semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterize ...
and so is relatively poor at emitting light. As a wide direct band gap material with resulting resistance to radiation damage, GaAs is an excellent material for outer space electronics and optical windows in high power applications. Because of its wide band gap, pure GaAs is highly resistive. Combined with a high
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
, this property makes GaAs a very good substrate for
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s and unlike Si provides natural isolation between devices and circuits. This has made it an ideal material for
monolithic microwave integrated circuit Monolithic microwave integrated circuit, or MMIC (sometimes pronounced "mimic"), is a type of integrated circuit (IC) device that operates at microwave frequencies (300 MHz to 300 GHz). These devices typically perform functions such as ...
s (MMICs), where active and essential passive components can readily be produced on a single slice of GaAs. One of the first GaAs
microprocessor A microprocessor is a computer processor where the data processing logic and control is included on a single integrated circuit, or a small number of integrated circuits. The microprocessor contains the arithmetic, logic, and control circ ...
s was developed in the early 1980s by the
RCA The RCA Corporation was a major American electronics company, which was founded as the Radio Corporation of America in 1919. It was initially a patent trust owned by General Electric (GE), Westinghouse, AT&T Corporation and United Fruit Comp ...
Corporation and was considered for the Star Wars program of the
United States Department of Defense The United States Department of Defense (DoD, USDOD or DOD) is an executive branch department of the federal government charged with coordinating and supervising all agencies and functions of the government directly related to national sec ...
. These processors were several times faster and several orders of magnitude more radiation resistant than their silicon counterparts, but were more expensive. Other GaAs processors were implemented by the
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructio ...
vendors
Cray Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed i ...
Computer Corporation,
Convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
, and Alliant in an attempt to stay ahead of the ever-improving
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSF ...
microprocessor. Cray eventually built one GaAs-based machine in the early 1990s, the Cray-3, but the effort was not adequately capitalized, and the company filed for bankruptcy in 1995. Complex layered structures of gallium arsenide in combination with
aluminium arsenide Aluminium arsenide () is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide ( GaAs) which ...
(AlAs) or the alloy AlxGa1−xAs can be grown using molecular-beam epitaxy (MBE) or using metalorganic vapor-phase epitaxy (MOVPE). Because GaAs and AlAs have almost the same
lattice constant A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal. A simple cubic crystal has o ...
, the layers have very little induced strain, which allows them to be grown almost arbitrarily thick. This allows extremely high performance and high electron mobility
HEMT A high-electron-mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heterojunction ...
transistors and other quantum well devices. GaAs is used for monolithic radar power amplifiers (but GaN can be less susceptible to heat damage).


Silicon advantages

Silicon has three major advantages over GaAs for integrated circuit manufacture. First, silicon is abundant and cheap to process in the form of
silicate In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is a ...
minerals. The
economies of scale In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables ...
available to the silicon industry has also hindered the adoption of GaAs. In addition, a Si crystal has a very stable structure and can be grown to very large diameter boules and processed with very good yields. It is also a fairly good thermal conductor, thus enabling very dense packing of transistors that need to get rid of their heat of operation, all very desirable for design and manufacturing of very large ICs. Such good mechanical characteristics also make it a suitable material for the rapidly developing field of nanoelectronics. Naturally, a GaAs surface cannot withstand the high temperatures needed for diffusion; however a viable and actively pursued alternative as of the 1980s was ion implantation. The second major advantage of Si is the existence of a native oxide (
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
, SiO2), which is used as an insulator. Silicon dioxide can be incorporated onto silicon circuits easily, and such layers are adherent to the underlying silicon. SiO2 is not only a good insulator (with a
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference ( ...
of 8.9 eV), but the Si-SiO2 interface can be easily engineered to have excellent electrical properties, most importantly low density of interface states. GaAs does not have a native oxide, does not easily support a stable adherent insulating layer, and does not possess the dielectric strength or surface passivating qualities of the Si-SiO2. Aluminum oxide (Al2O3) has been extensively studied as a possible gate oxide for GaAs (as well as InGaAs). The third advantage of silicon is that it possesses a higher hole mobility compared to GaAs (500 versus 400 cm2V−1s−1). This high mobility allows the fabrication of higher-speed P-channel
field-effect transistor The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: ''source'', ''gate'', and ''drain''. FETs co ...
s, which are required for
CMOS Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", ) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSF ...
logic. Because they lack a fast CMOS structure, GaAs circuits must use logic styles which have much higher power consumption; this has made GaAs logic circuits unable to compete with silicon logic circuits. For manufacturing solar cells, silicon has relatively low absorptivity for sunlight, meaning about 100 micrometers of Si is needed to absorb most sunlight. Such a layer is relatively robust and easy to handle. In contrast, the absorptivity of GaAs is so high that only a few micrometers of thickness are needed to absorb all of the light. Consequently, GaAs thin films must be supported on a substrate material.Single-Crystalline Thin Film
US Department of Energy
Silicon is a pure element, avoiding the problems of stoichiometric imbalance and thermal unmixing of GaAs. Silicon has a nearly perfect lattice; impurity density is very low and allows very small structures to be built (down to 5 nm in commercial production as of 2020). In contrast, GaAs has a very high impurity density, which makes it difficult to build integrated circuits with small structures, so the 500 nm process is a common process for GaAs. Silicon has about three times the thermal conductivity of GaAs, with less risk of local overheating in high power devices.


Other applications


Transistor uses

Gallium arsenide (GaAs) transistors are used in the RF power amplifiers for cell phones and wireless communicating.


Solar cells and detectors

Gallium arsenide is an important semiconductor material for high-cost, high-efficiency
solar cell A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.
s and is used for single-crystalline thin-film solar cells and for
multi-junction solar cells Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple ...
. The first known operational use of GaAs solar cells in space was for the Venera 3 mission, launched in 1965. The GaAs solar cells, manufactured by Kvant, were chosen because of their higher performance in high temperature environments. GaAs cells were then used for the Lunokhod rovers for the same reason. In 1970, the GaAs heterostructure solar cells were developed by the team led by Zhores Alferov in the
USSR The Soviet Union,. officially the Union of Soviet Socialist Republics. (USSR),. was a transcontinental country that spanned much of Eurasia from 1922 to 1991. A flagship communist state, it was nominally a federal union of fifteen nati ...
, achieving much higher efficiencies. In the early 1980s, the efficiency of the best GaAs solar cells surpassed that of conventional, crystalline silicon-based solar cells. In the 1990s, GaAs solar cells took over from silicon as the cell type most commonly used for photovoltaic arrays for satellite applications. Later, dual- and triple-junction solar cells based on GaAs with
germanium Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors ...
and indium gallium phosphide layers were developed as the basis of a triple-junction solar cell, which held a record efficiency of over 32 % and can operate also with light as concentrated as 2,000 suns. This kind of solar cell powered the
Mars Exploration Rover NASA's Mars Exploration Rover (MER) mission was a robotic space mission involving two Mars rovers, '' Spirit'' and '' Opportunity'', exploring the planet Mars. It began in 2003 with the launch of the two rovers to explore the Martian surface ...
s Spirit and Opportunity, which explored
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
' surface. Also many solar cars utilize GaAs in solar arrays, as did the Hubble Telescope. GaAs-based devices hold the world record for the highest-efficiency single-junction solar cell at 29.1% (as of 2019). This high efficiency is attributed to the extreme high quality GaAs epitaxial growth, surface passivation by the AlGaAs, and the promotion of photon recycling by the thin film design. GaAs-based
photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
are also responsible for the highest efficiency (as of 2022) of conversion of light to electricity, as researchers from the Fraunhofer Institute for Solar Energy Systems achieved a 68.9% efficiency when exposing a GaAs
thin film A thin film is a layer of material ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
photovoltaic cell to monochromatic laser light with a wavelength of 858 nanometers. Today, multi-junction GaAs cells have the highest efficiencies of existing photovoltaic cells and trajectories show that this is likely to continue to be the case for the foreseeable future. In 2022,
Rocket Lab Rocket Lab is a public American aerospace manufacturer and launch service provider, with a New Zealand subsidiary. The company operates lightweight Electron orbital rockets, which provide dedicated launches for small satellites. Rocket Lab also ...
unveiled a solar cell with 33.3% efficiency based on inverted metamorphic multi-junction (IMM) technology. In IMM, the lattice-matched (same lattice parameters) materials are grown first, followed by mismatched materials. The top cell, GaInP, is grown first and lattice matched to the GaAs substrate, followed by a layer of either GaAs or GaInAs with a minimal mismatch, and the last layer has the greatest lattice mismatch. After growth, the cell is mounted to a secondary handle and the GaAs substrate is removed. A main advantage of the IMM process is that the inverted growth according to lattice mismatch allows a path to higher cell efficiency. Complex designs of AlxGa1−xAs-GaAs devices using quantum wells can be sensitive to infrared radiation ( QWIP). GaAs diodes can be used for the detection of X-rays.


Future outlook of GaAs solar cells

Despite GaAs-based photovoltaics being the clear champions of efficiency for solar cells, they have relatively limited use in today's market. In both world electricity generation and world electricity generating capacity, solar electricity is growing faster than any other source of fuel (wind, hydro, biomass, and so on) for the last decade. However, GaAs solar cells have not currently been adopted for widespread solar electricity generation. This is largely due to the cost of GaAs solar cells - in space applications, high performance is required and the corresponding high cost of the existing GaAs technologies is accepted. For example, GaAs-based photovoltaics show the best resistance to gamma radiation and high temperature fluctuations, which are of great importance for spacecraft. But in comparison to other solar cells, III-V solar cells are two to three orders of magnitude more expensive than other technologies such as silicon-based solar cells. The primary sources of this cost are the
epitaxial growth Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epit ...
costs and the substrate the cell is deposited on. GaAs solar cells are most commonly fabricated utilizing epitaxial growth techniques such as metal-organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE). A significant reduction in costs for these methods would require improvements in tool costs, throughput, material costs, and manufacturing efficiency. Increasing the deposition rate could reduce costs, but this cost reduction would be limited by the fixed times in other parts of the process such as cooling and heating. The substrate used to grow these solar cells is usually germanium or gallium arsenide which are notably expensive materials. One of the main pathways to reduce substrate costs is to reuse the substrate. An early method proposed to accomplish this is epitaxial lift-off (ELO), but this method is time-consuming, somewhat dangerous (with its use of
hydrofluoric acid Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colourless, acidic and highly corrosive. It is used to make most fluorine-containing compounds; examples include the commonly used pharmaceutical antidepres ...
), and requires multiple post-processing steps. However, other methods have been proposed that use phosphide-based materials and hydrochloric acid to achieve ELO with surface passivation and minimal post-
etching Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other types ...
residues and allows for direct reuse of the GaAs substrate. There is also preliminary evidence that
spalling Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ba ...
could be used to remove the substrate for reuse. An alternative path to reduce substrate cost is to use cheaper materials, although materials for this application are not currently commercially available or developed. Yet another consideration to lower GaAs solar cell costs could be concentrator photovoltaics. Concentrators use lenses or parabolic mirrors to focus light onto a solar cell, and thus a smaller (and therefore less expensive) GaAs solar cell is needed to achieve the same results. Concentrator systems have the highest efficiency of existing photovoltaics. So, technologies such as concentrator photovoltaics and methods in development to lower epitaxial growth and substrate costs could lead to a reduction in the cost of GaAs solar cells and forge a path for use in terrestrial applications.


Light-emission devices

GaAs has been used to produce near-infrared laser diodes since 1962. It is often used in alloys with other semiconductor compounds for these applications. ''N''-type GaAs doped with silicon donor atoms (on Ga sites) and boron acceptor atoms (on As sites) responds to ionizing radiation by emitting scintillation photons. At cryogenic temperatures it is among the brightest scintillators known and is a promising candidate for detecting rare electronic excitations from interacting dark matter, due to the following six essential factors: # Silicon donor electrons in GaAs have a binding energy that is among the lowest of all known ''n''-type semiconductors. Free electrons above per cm3 are not “frozen out" and remain delocalized at cryogenic temperatures. # Boron and gallium are group III elements, so boron as an impurity primarily occupies the gallium site. However, a sufficient number occupy the arsenic site and act as acceptors that efficiently trap ionization event holes from the valence band. # After trapping an ionization event hole from the valence band, the boron acceptors can combine radiatively with delocalized donor electrons to produce photons 0.2 eV below the cryogenic band-gap energy (1.52 eV). This is an efficient radiative process that produces scintillation photons that are not absorbed by the GaAs crystal. # There is no afterglow, because metastable radiative centers are quickly annihilated by the delocalized electrons. This is evidenced by the lack of thermally induced luminescence. # ''N''-type GaAs has a high refractive index (~3.5) and the narrow-beam absorption coefficient is proportional to the free electron density and typically several per cm. One would expect that almost all of the scintillation photons should be trapped and absorbed in the crystal, but this is not the case. One explanation for the high luminosity is that the narrow-beam absorption is largely optical scattering that allows most of the photons to avoid total internal reflection trapping. # ''N''-type GaAs(Si,B) is commercially grown as 10 kg crystal ingots and sliced into thin wafers as substrates for electronic circuits. Boron oxide is used as an encapsulant to prevent the loss of arsenic during crystal growth, but also has the benefit of providing boron acceptors for scintillation.


Fiber optic temperature measurement

For this purpose an optical fiber tip of an optical fiber temperature sensor is equipped with a gallium arsenide crystal. Starting at a light wavelength of 850 nm GaAs becomes optically translucent. Since the spectral position of the band gap is temperature dependent, it shifts about 0.4 nm/K. The measurement device contains a light source and a device for the spectral detection of the band gap. With the changing of the band gap, (0.4 nm/K) an algorithm calculates the temperature (all 250 ms).A New Fiber Optical Thermometer and Its Application for Process Control in Strong Electric, Magnetic, and Electromagnetic Fields
optocon.de (PDF; 2,5 MB)


Spin-charge converters

GaAs may have applications in
spintronics Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid- ...
as it can be used instead of
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
in spin-charge converters and may be more tunable.


Safety

The environment, health and safety aspects of gallium arsenide sources (such as trimethylgallium and
arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications ...
) and industrial hygiene monitoring studies of metalorganic precursors have been reported. California lists gallium arsenide as a
carcinogen A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis (the formation of cancer). This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive sub ...
, as do
IARC IARC may refer to: * International Aerial Robotics Competition * International Age Rating Coalition * International Agency for Research on Cancer * International Arctic Research Center * Israel Amateur Radio Club The Israel Amateur Radio Club ...
and ECA, and it is considered a known carcinogen in animals. On the other hand, a 2013 review (funded by industry) argued against these classifications, saying that when rats or mice inhale fine GaAs powders (as in previous studies), they get cancer from the resulting lung irritation and inflammation, rather than from a primary carcinogenic effect of the GaAs itself—and that, moreover, fine GaAs powders are unlikely to be created in the production or use of GaAs.


See also

*
Aluminium arsenide Aluminium arsenide () is a semiconductor material with almost the same lattice constant as gallium arsenide and aluminium gallium arsenide and wider band gap than gallium arsenide. (AlAs) can form a superlattice with gallium arsenide ( GaAs) which ...
* Aluminium gallium arsenide *
Arsine Arsine (IUPAC name: arsane) is an inorganic compound with the formula As H3. This flammable, pyrophoric, and highly toxic pnictogen hydride gas is one of the simplest compounds of arsenic. Despite its lethality, it finds some applications ...
* Cadmium telluride *
Gallium antimonide Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a lattice constant of about 0.61 nm. It has a band gap of 0.67 eV. History The intermetallic compound GaSb was first prepared in 1926 by V ...
* Gallium arsenide phosphide * Gallium manganese arsenide * Gallium nitride *
Gallium phosphide Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. Impure polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single ...
*
Heterostructure emitter bipolar transistor The Heterojunction-emitter bipolar transistor (HEBT), is a somewhat unusual arrangement with respect to emitter blocking of minority carriers. This is accomplished by using heterostructure confinement in the emitter, introducing an energy barrier to ...
*
Indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to galliu ...
*
Indium gallium arsenide Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy ( chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are ( group III) elements of the periodic table w ...
*
Indium phosphide Indium phosphide (InP) is a binary semiconductor composed of indium and phosphorus. It has a face-centered cubic (" zincblende") crystal structure, identical to that of GaAs and most of the III-V semiconductors. Manufacturing Indium phosphide ...
*
Light-emitting diode A light-emitting diode (LED) is a semiconductor Electronics, device that Light#Light sources, emits light when Electric current, current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy i ...
* MESFET (metal–semiconductor field-effect transistor) * MOVPE * Multijunction solar cell *
Photomixing Photomixing is the generation of continuous wave terahertz radiation from two lasers. The beams are mixed together and focused onto a photomixer device which generates the terahertz radiation. It is technologically significant because there are fe ...
to generate THz * Trimethylgallium


References


Cited sources

*


External links


Case Studies in Environmental Medicine: Arsenic ToxicityFacts and figures on processing gallium arsenide
{{Authority control Arsenides Inorganic compounds Gallium compounds IARC Group 1 carcinogens Optoelectronics III-V semiconductors III-V compounds Solar cells Light-emitting diode materials Zincblende crystal structure