HOME
The Info List - Frequency Modulation





In telecommunications and signal processing, frequency modulation (FM) is the encoding of information in a carrier wave by varying the instantaneous frequency of the wave. In analog frequency modulation, such as FM radio
FM radio
broadcasting of an audio signal representing voice or music, the instantaneous frequency deviation, the difference between the frequency of the carrier and its center frequency, is proportional to the modulating signal. Digital data can be encoded and transmitted via FM by shifting the carrier's frequency among a predefined set of frequencies representing digits - for example one frequency can represent a binary 1 and a second can represent binary 0. This modulation technique is known as frequency-shift keying (FSK). FSK is widely used in modems and fax modems, and can also be used to send Morse code.[1] Radioteletype
Radioteletype
also uses FSK.[2] Frequency modulation
Frequency modulation
is widely used for FM radio
FM radio
broadcasting. It is also used in telemetry, radar, seismic prospecting, and monitoring newborns for seizures via EEG,[3] two-way radio systems, music synthesis, magnetic tape-recording systems and some video-transmission systems. In radio transmission, an advantage of frequency modulation is that it has a larger signal-to-noise ratio and therefore rejects radio frequency interference better than an equal power amplitude modulation (AM) signal. For this reason, most music is broadcast over FM radio. Frequency modulation
Frequency modulation
and phase modulation are the two complementary principal methods of angle modulation; phase modulation is often used as an intermediate step to achieve frequency modulation. These methods contrast with amplitude modulation, in which the amplitude of the carrier wave varies, while the frequency and phase remain constant.

Contents

1 Theory

1.1 Sinusoidal
Sinusoidal
baseband signal 1.2 Modulation
Modulation
index 1.3 Bessel functions 1.4 Carson's rule

2 Noise reduction 3 Implementation

3.1 Modulation 3.2 Demodulation

4 Applications

4.1 Magnetic tape
Magnetic tape
storage 4.2 Sound 4.3 Radio

5 See also 6 References 7 Further reading

Theory[edit]

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2017) (Learn how and when to remove this template message)

If the information to be transmitted (i.e., the baseband signal) is

x

m

( t )

displaystyle x_ m (t)

and the sinusoidal carrier is

x

c

( t ) =

A

c

cos ⁡ ( 2 π

f

c

t )

displaystyle x_ c (t)=A_ c cos(2pi f_ c t),

, where fc is the carrier's base frequency, and Ac is the carrier's amplitude, the modulator combines the carrier with the baseband data signal to get the transmitted signal:[citation needed]

y ( t )

=

A

c

cos ⁡

(

2 π

0

t

f ( τ ) d τ

)

=

A

c

cos ⁡

(

2 π

0

t

[

f

c

+

f

Δ

x

m

( τ )

]

d τ

)

=

A

c

cos ⁡

(

2 π

f

c

t + 2 π

f

Δ

0

t

x

m

( τ ) d τ

)

displaystyle begin aligned y(t)&=A_ c cos left(2pi int _ 0 ^ t f(tau )dtau right)\&=A_ c cos left(2pi int _ 0 ^ t left[f_ c +f_ Delta x_ m (tau )right]dtau right)\&=A_ c cos left(2pi f_ c t+2pi f_ Delta int _ 0 ^ t x_ m (tau )dtau right)\end aligned

where

f

Δ

displaystyle f_ Delta ,

=

K

f

displaystyle K_ f

A

m

displaystyle A_ m

,

K

f

displaystyle K_ f

being the sensitivity of the frequency modulator and

A

m

displaystyle A_ m

being the amplitude of the modulating signal or baseband signal. In this equation,

f ( τ )

displaystyle f(tau ),

is the instantaneous frequency of the oscillator and

f

Δ

displaystyle f_ Delta ,

is the frequency deviation, which represents the maximum shift away from fc in one direction, assuming xm(t) is limited to the range ±1. While most of the energy of the signal is contained within fc ± fΔ, it can be shown by Fourier analysis
Fourier analysis
that a wider range of frequencies is required to precisely represent an FM signal. The frequency spectrum of an actual FM signal has components extending infinitely, although their amplitude decreases and higher-order components are often neglected in practical design problems.[4] Sinusoidal
Sinusoidal
baseband signal[edit] Mathematically, a baseband modulated signal may be approximated by a sinusoidal continuous wave signal with a frequency fm.This method is also named as Single-tone Modulation.The integral of such a signal is:

0

t

x

m

( τ ) d τ =

A

m

sin ⁡ ( 2 π

f

m

t )

2 π

f

m

displaystyle int _ 0 ^ t x_ m (tau )dtau = frac A_ m sin(2pi f_ m t) 2pi f_ m ,

In this case, the expression for y(t) above simplifies to:

y ( t ) =

A

c

cos ⁡

(

2 π

f

c

t +

A

m

f

Δ

f

m

sin ⁡

(

2 π

f

m

t

)

)

displaystyle y(t)=A_ c cos left(2pi f_ c t+ frac A_ m f_ Delta f_ m sin left(2pi f_ m tright)right),

where the amplitude

A

m

displaystyle A_ m ,

of the modulating sinusoid is represented by the peak deviation

f

Δ

displaystyle f_ Delta ,

(see frequency deviation). The harmonic distribution of a sine wave carrier modulated by such a sinusoidal signal can be represented with Bessel functions; this provides the basis for a mathematical understanding of frequency modulation in the frequency domain. Modulation
Modulation
index[edit] As in other modulation systems, the modulation index indicates by how much the modulated variable varies around its unmodulated level. It relates to variations in the carrier frequency:

h =

Δ

f

f

m

=

f

Δ

x

m

( t )

f

m

 

displaystyle h= frac Delta f f_ m = frac f_ Delta x_ m (t) f_ m

where

f

m

displaystyle f_ m ,

is the highest frequency component present in the modulating signal xm(t), and

Δ

f

displaystyle Delta f,

is the peak frequency-deviation—i.e. the maximum deviation of the instantaneous frequency from the carrier frequency. For a sine wave modulation, the modulation index is seen to be the ratio of the peak frequency deviation of the carrier wave to the frequency of the modulating sine wave. If

h ≪ 1

displaystyle hll 1

, the modulation is called narrowband FM (NFM), and its bandwidth is approximately

2

f

m

displaystyle 2f_ m ,

. Sometimes modulation index

h < 0.3

displaystyle h<0.3

 radians is considered as NFM, otherwise wideband FM (WFM or FM). For digital modulation systems, for example Binary Frequency Shift Keying (BFSK), where a binary signal modulates the carrier, the modulation index is given by:

h =

Δ

f

f

m

=

Δ

f

1

2

T

s

= 2 Δ

f

T

s

 

displaystyle h= frac Delta f f_ m = frac Delta f frac 1 2T_ s =2Delta fT_ s

where

T

s

displaystyle T_ s ,

is the symbol period, and

f

m

=

1

2

T

s

displaystyle f_ m = frac 1 2T_ s ,

is used as the highest frequency of the modulating binary waveform by convention, even though it would be more accurate to say it is the highest fundamental of the modulating binary waveform. In the case of digital modulation, the carrier

f

c

displaystyle f_ c ,

is never transmitted. Rather, one of two frequencies is transmitted, either

f

c

+ Δ

f

displaystyle f_ c +Delta f

or

f

c

− Δ

f

displaystyle f_ c -Delta f

, depending on the binary state 0 or 1 of the modulation signal. If

h ≫ 1

displaystyle hgg 1

, the modulation is called wideband FM and its bandwidth is approximately

2

f

Δ

displaystyle 2f_ Delta ,

. While wideband FM uses more bandwidth, it can improve the signal-to-noise ratio significantly; for example, doubling the value of

Δ

f

displaystyle Delta f,

, while keeping

f

m

displaystyle f_ m

constant, results in an eight-fold improvement in the signal-to-noise ratio.[5] (Compare this with Chirp
Chirp
spread spectrum, which uses extremely wide frequency deviations to achieve processing gains comparable to traditional, better-known spread-spectrum modes). With a tone-modulated FM wave, if the modulation frequency is held constant and the modulation index is increased, the (non-negligible) bandwidth of the FM signal increases but the spacing between spectra remains the same; some spectral components decrease in strength as others increase. If the frequency deviation is held constant and the modulation frequency increased, the spacing between spectra increases. Frequency modulation
Frequency modulation
can be classified as narrowband if the change in the carrier frequency is about the same as the signal frequency, or as wideband if the change in the carrier frequency is much higher (modulation index > 1) than the signal frequency. [6] For example, narrowband FM (NFM) is used for two way radio systems such as Family Radio
Radio
Service, in which the carrier is allowed to deviate only 2.5 kHz above and below the center frequency with speech signals of no more than 3.5 kHz bandwidth. Wideband FM is used for FM broadcasting, in which music and speech are transmitted with up to 75 kHz deviation from the center frequency and carry audio with up to a 20 kHz bandwidth and subcarriers up to 92 kHz. Bessel functions[edit] For the case of a carrier modulated by a single sine wave, the resulting frequency spectrum can be calculated using Bessel functions of the first kind, as a function of the sideband number and the modulation index. The carrier and sideband amplitudes are illustrated for different modulation indices of FM signals. For particular values of the modulation index, the carrier amplitude becomes zero and all the signal power is in the sidebands.[4] Since the sidebands are on both sides of the carrier, their count is doubled, and then multiplied by the modulating frequency to find the bandwidth. For example, 3 kHz deviation modulated by a 2.2 kHz audio tone produces a modulation index of 1.36. Suppose that we limit ourselves to only those sidebands that have a relative amplitude of at least 0.01. Then, examining the chart shows this modulation index will produce three sidebands. These three sidebands, when doubled, gives us (6 * 2.2 kHz) or a 13.2 kHz required bandwidth.

Modulation index Sideband
Sideband
amplitude

Carrier 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.00 1.00

0.25 0.98 0.12

0.5 0.94 0.24 0.03

1.0 0.77 0.44 0.11 0.02

1.5 0.51 0.56 0.23 0.06 0.01

2.0 0.22 0.58 0.35 0.13 0.03

2.41 0 0.52 0.43 0.20 0.06 0.02

2.5 −0.05 0.50 0.45 0.22 0.07 0.02 0.01

3.0 −0.26 0.34 0.49 0.31 0.13 0.04 0.01

4.0 −0.40 −0.07 0.36 0.43 0.28 0.13 0.05 0.02

5.0 −0.18 −0.33 0.05 0.36 0.39 0.26 0.13 0.05 0.02

5.53 0 −0.34 −0.13 0.25 0.40 0.32 0.19 0.09 0.03 0.01

6.0 0.15 −0.28 −0.24 0.11 0.36 0.36 0.25 0.13 0.06 0.02

7.0 0.30 0.00 −0.30 −0.17 0.16 0.35 0.34 0.23 0.13 0.06 0.02

8.0 0.17 0.23 −0.11 −0.29 −0.10 0.19 0.34 0.32 0.22 0.13 0.06 0.03

8.65 0 0.27 0.06 −0.24 −0.23 0.03 0.26 0.34 0.28 0.18 0.10 0.05 0.02

9.0 −0.09 0.25 0.14 −0.18 −0.27 −0.06 0.20 0.33 0.31 0.21 0.12 0.06 0.03 0.01

10.0 −0.25 0.04 0.25 0.06 −0.22 −0.23 −0.01 0.22 0.32 0.29 0.21 0.12 0.06 0.03 0.01

12.0 0.05 −0.22 −0.08 0.20 0.18 −0.07 −0.24 −0.17 0.05 0.23 0.30 0.27 0.20 0.12 0.07 0.03 0.01

Carson's rule[edit] Main article: Carson bandwidth rule A rule of thumb, Carson's rule states that nearly all (~98 percent) of the power of a frequency-modulated signal lies within a bandwidth

B

T

displaystyle B_ T ,

of:

 

B

T

= 2 ( Δ f +

f

m

)

displaystyle B_ T =2(Delta f+f_ m ),

= 2

f

m

( β + 1 )

displaystyle =2f_ m (beta +1)

where

Δ f

displaystyle Delta f,

, as defined above, is the peak deviation of the instantaneous frequency

f ( t )

displaystyle f(t),

from the center carrier frequency

f

c

displaystyle f_ c

,

β

displaystyle beta

is the Modulation
Modulation
index which is the ratio of frequency deviation to highest frequency in the modulating signal and

f

m

displaystyle f_ m ,

is the highest frequency in the modulating signal. Condition for application of Carson's rule is only sinusoidal signals.

 

B

T

= 2 ( Δ f + W )

displaystyle B_ T =2(Delta f+W),

= 2 W ( D + 1 )

displaystyle =2W(D+1)

where W is the highest frequency in the modulating signal but non-sinusoidal in nature and D is the Deviation ratio which the ratio of frequency deviation to highest frequency of modulating non-sinusoidal signal. Noise reduction[edit] FM provides improved Signal-to-noise ratio
Signal-to-noise ratio
(SNR), as compared for example with AM. Compared with an optimum AM scheme, FM typically has poorer SNR below a certain signal level called the noise threshold, but above a higher level – the full improvement or full quieting threshold – the SNR is much improved over AM. The improvement depends on modulation level and deviation. For typical voice communications channels, improvements are typically 5-15 dB. FM broadcasting using wider deviation can achieve even greater improvements. Additional techniques, such as pre-emphasis of higher audio frequencies with corresponding de-emphasis in the receiver, are generally used to improve overall SNR in FM circuits. Since FM signals have constant amplitude, FM receivers normally have limiters that remove AM noise, further improving SNR.[7][8] Implementation[edit] Modulation[edit] FM signals can be generated using either direct or indirect frequency modulation:

Direct FM modulation can be achieved by directly feeding the message into the input of a voltage-controlled oscillator. For indirect FM modulation, the message signal is integrated to generate a phase-modulated signal. This is used to modulate a crystal-controlled oscillator, and the result is passed through a frequency multiplier to produce an FM signal. In this modulation, narrowband FM is generated leading to wideband FM later and hence the modulation is known as indirect FM modulation.[9]

Demodulation[edit] See also: Detectors Many FM detector circuits exist. A common method for recovering the information signal is through a Foster-Seeley discriminator. A phase-locked loop can be used as an FM demodulator. Slope detection demodulates an FM signal by using a tuned circuit which has its resonant frequency slightly offset from the carrier. As the frequency rises and falls the tuned circuit provides a changing amplitude of response, converting FM to AM. AM receivers may detect some FM transmissions by this means, although it does not provide an efficient means of detection for FM broadcasts. Applications[edit] Magnetic tape
Magnetic tape
storage[edit] FM is also used at intermediate frequencies by analog VCR systems (including VHS) to record the luminance (black and white) portions of the video signal. Commonly, the chrominance component is recorded as a conventional AM signal, using the higher-frequency FM signal as bias. FM is the only feasible method of recording the luminance ("black and white") component of video to (and retrieving video from) magnetic tape without distortion; video signals have a large range of frequency components – from a few hertz to several megahertz, too wide for equalizers to work with due to electronic noise below −60 dB. FM also keeps the tape at saturation level, acting as a form of noise reduction; a limiter can mask variations in playback output, and the FM capture effect removes print-through and pre-echo. A continuous pilot-tone, if added to the signal – as was done on V2000
V2000
and many Hi-band formats – can keep mechanical jitter under control and assist timebase correction. These FM systems are unusual, in that they have a ratio of carrier to maximum modulation frequency of less than two; contrast this with FM audio broadcasting, where the ratio is around 10,000. Consider, for example, a 6-MHz carrier modulated at a 3.5-MHz rate; by Bessel analysis, the first sidebands are on 9.5 and 2.5 MHz and the second sidebands are on 13 MHz and −1 MHz. The result is a reversed-phase sideband on +1 MHz; on demodulation, this results in unwanted output at 6−1 = 5 MHz. The system must be designed so that this unwanted output is reduced to an acceptable level.[10] Sound[edit] FM is also used at audio frequencies to synthesize sound. This technique, known as FM synthesis, was popularized by early digital synthesizers and became a standard feature in several generations of personal computer sound cards. Radio[edit]

An American FM radio
FM radio
transmitter in Buffalo, NY at WEDG

Main article: FM broadcasting Edwin Howard Armstrong
Edwin Howard Armstrong
(1890–1954) was an American electrical engineer who invented wideband frequency modulation (FM) radio.[11] He patented the regenerative circuit in 1914, the superheterodyne receiver in 1918 and the super-regenerative circuit in 1922.[12] Armstrong presented his paper, "A Method of Reducing Disturbances in Radio
Radio
Signaling by a System of Frequency Modulation", (which first described FM radio) before the New York section of the Institute of Radio
Radio
Engineers on November 6, 1935. The paper was published in 1936.[13] As the name implies, wideband FM (WFM) requires a wider signal bandwidth than amplitude modulation by an equivalent modulating signal; this also makes the signal more robust against noise and interference. Frequency modulation
Frequency modulation
is also more robust against signal-amplitude-fading phenomena. As a result, FM was chosen as the modulation standard for high frequency, high fidelity radio transmission, hence the term "FM radio" (although for many years the BBC
BBC
called it " VHF
VHF
radio" because commercial FM broadcasting
FM broadcasting
uses part of the VHF
VHF
band—the FM broadcast band). FM receivers employ a special detector for FM signals and exhibit a phenomenon known as the capture effect, in which the tuner "captures" the stronger of two stations on the same frequency while rejecting the other (compare this with a similar situation on an AM receiver, where both stations can be heard simultaneously). However, frequency drift or a lack of selectivity may cause one station to be overtaken by another on an adjacent channel. Frequency drift was a problem in early (or inexpensive) receivers; inadequate selectivity may affect any tuner. An FM signal can also be used to carry a stereo signal; this is done with multiplexing and demultiplexing before and after the FM process. The FM modulation and demodulation process is identical in stereo and monaural processes. A high-efficiency radio-frequency switching amplifier can be used to transmit FM signals (and other constant-amplitude signals). For a given signal strength (measured at the receiver antenna), switching amplifiers use less battery power and typically cost less than a linear amplifier. This gives FM another advantage over other modulation methods requiring linear amplifiers, such as AM and QAM. FM is commonly used at VHF
VHF
radio frequencies for high-fidelity broadcasts of music and speech. Analog TV sound is also broadcast using FM. Narrowband FM is used for voice communications in commercial and amateur radio settings. In broadcast services, where audio fidelity is important, wideband FM is generally used. In two-way radio, narrowband FM (NBFM) is used to conserve bandwidth for land mobile, marine mobile and other radio services. There are reports that on October 5, 1924, Professor Mikhail A. Bonch-Bruevich, during a scientific and technical conversation in the Nizhny Novgorod Radio
Radio
Laboratory, reported about his new method of telephony, based on a change in the period of oscillations. Demonstration of frequency modulation was carried out on the laboratory model.[14] See also[edit]

Amplitude
Amplitude
modulation Continuous-wave frequency-modulated radar Chirp FM broadcasting FM stereo FM-UWB (FM and Ultra Wideband) History of radio Modulation, for a list of other modulation techniques

References[edit]

^ Stan Gibilisco (2002). Teach yourself electricity and electronics. McGraw-Hill Professional. p. 477. ISBN 978-0-07-137730-0.  ^ David B. Rutledge (1999). The Electronics of Radio. Cambridge University Press. p. 310. ISBN 978-0-521-64645-1.  ^ B. Boashash, editor, "Time-Frequency Signal Analysis and Processing – A Comprehensive Reference", Elsevier Science, Oxford, 2003; ISBN 0-08-044335-4 ^ a b T.G. Thomas, S. C. Sekhar Communication Theory, Tata-McGraw Hill 2005, ISBN 0-07-059091-5 page 136 ^ Der, Lawrence, Ph.D., Frequency Modulation
Modulation
(FM) Tutorial, http://www.silabs.com/Marcom%20Documents/Resources/FMTutorial.pdf, Silicon Laboratories, Inc., accessed 2013 February 24, p. 5 ^ Lathi, B. P. (1968). Communication Systems, p. 214–217. New York: John Wiley and Sons, ISBN 0-471-51832-8. ^ H. P. Westman, ed. (1970). Reference Data for Radio
Radio
Engineers (Fifth ed.). Howard W. Sams & Co. p. 21-11.  ^ Alan Bloom (2010). "Chapter 8. Modulation". In H. Ward Silver and Mark J. Wilson (Eds). The ARRL Handbook for Radio
Radio
Communications. American Radio
Radio
Relay League. p. 8.7. ISBN 978-0-87259-146-2. CS1 maint: Extra text: editors list (link) ^ Haykin, Simon [Ed]. (2001). Communication Systems, 4th ed. ^ : "FM Systems Of Exceptional Bandwidth" Proc. IEEE vol 112, no. 9, p. 1664, September 1965 ^ A. Michael Noll (2001). Principles of modern communications technology. Artech House. p. 104. ISBN 978-1-58053-284-6.  ^ US 1342885  ^ Armstrong, E. H. (May 1936). "A Method of Reducing Disturbances in Radio
Radio
Signaling by a System of Frequency Modulation". Proceedings of the IRE. IRE. 24 (5): 689–740. doi:10.1109/JRPROC.1936.227383.  ^ Ф. Лбов. Новая система радиофона // «Радиолюбитель». — 1924. — № 6. — С. 86.

Further reading[edit]

A. Bruce Carlson. Communication Systems, 4th edition. McGraw-Hill Science/Engineering/Math. 2001. ISBN 0-07-011127-8, ISBN 978-0-07-011127-1. Gary L. Frost. Early FM Radio: Incremental Technology in Twentieth-Century America. Baltimore: Johns Hopkins University Press, 2010. ISBN 0-8018-9440-9, ISBN 978-0-8018-9440-4. Ken Seymour, AT&T Wireless (Mobility). Frequency Modulation, The Electronics Handbook, pp 1188-1200, 1st Edition, 1996. 2nd Edition, 2005 CRC Press, Inc., ISBN 0-8493-8345-5 (1st Edition).

v t e

Analog television
Analog television
broadcasting topics

Systems

180-line 405-line ( System A ) 441-line 525-line ( System J , System M ) 625-line ( System B , System C , System D , System G , System H , System I , System K , System L , System N ) 819-line ( System E , System F )

Color systems

NTSC PAL PAL-M PAL-S PALplus SECAM

Video

Back porch and front porch Black level Blanking level Chrominance Chrominance
Chrominance
subcarrier Colorburst Color killer Color TV Composite video Frame (video) Horizontal scan rate Horizontal blanking interval Luma Nominal analogue blanking Overscan Raster scan Safe area Television lines Vertical blanking interval White clipper

Sound

Multichannel television sound NICAM Sound-in-Syncs Zweikanalton

Modulation

Frequency modulation Quadrature amplitude modulation Vestigial sideband modulation (VSB)

Transmission

Amplifiers Antenna (radio) Broadcast transmitter/Transmitter station Cavity amplifier Differential gain Differential phase Diplexer Dipole antenna Dummy load Frequency mixer Intercarrier method Intermediate frequency Output power of an analog TV transmitter Pre-emphasis Residual carrier Split sound system Superheterodyne transmitter Television receive-only Direct-broadcast satellite television Television transmitter Terrestrial television Transposer

Frequencies & Bands

Frequency offset Microwave transmission Television channel frequencies UHF VHF

Propagation

Beam tilt Distortion Earth bulge Field strength in free space Knife-edge effect Noise (electronics) Null fill Path loss Radiation pattern Skew Television interference

Testing

Distortionmeter Field strength meter Vectorscope VIT signals Zero reference pulse

Artifacts

Dot crawl Ghosting Hanover bars Sparklies

v t e

Telecommunications

History

Beacon Broadcasting Cable protection system Cable TV Communications satellite Computer network Drums Electrical telegraph Fax Heliographs Hydraulic telegraph Internet Mass media Mobile phone Optical telecommunication Optical telegraphy Pager Photophone Prepay mobile phone Radio Radiotelephone Satellite communications Semaphore Smartphone Smoke signals Telecommunications
Telecommunications
history Telautograph Telegraphy Teleprinter
Teleprinter
(teletype) Telephone The Telephone Cases Television Timeline of communication technology Undersea telegraph line Videoconferencing Videophone Videotelephony Whistled language

Pioneers

Edwin Howard Armstrong John Logie Baird Paul Baran Alexander Graham Bell Tim Berners-Lee Jagadish Chandra Bose Vint Cerf Claude Chappe Donald Davies Lee de Forest Philo Farnsworth Reginald Fessenden Elisha Gray Erna Schneider Hoover Charles K. Kao Hedy Lamarr Innocenzo Manzetti Guglielmo Marconi Antonio Meucci Radia Perlman Alexander Stepanovich Popov Johann Philipp Reis Nikola Tesla Camille Tissot Alfred Vail Charles Wheatstone Vladimir K. Zworykin

Transmission media

Coaxial cable Fiber-optic communication

Optical fiber

Free-space optical communication Molecular communication Radio
Radio
waves Transmission line

Network topology and switching

Links Nodes Terminal node Network switching (circuit packet) Telephone exchange

Multiplexing

Space-division Frequency-division Time-division Polarization-division Orbital angular-momentum Code-division

Networks

ARPANET BITNET Cellular network Computer CYCLADES Ethernet FidoNet Internet ISDN LAN Mobile NGN NPL network Public Switched Telephone Radio Telecommunications
Telecommunications
equipment Television Telex WAN Wireless World Wide Web

Category Portal

v t e

Analog and digital audio broadcasting

Terrestrial

Radio
Radio
modulation

AM FM COFDM

Frequency allocations

LW (LF) MW (MF) SW (HF) VHF
VHF
(low / mid / high) L band
L band
(UHF)

Digital systems

CAM-D DAB/DAB+ DRM/DRM+ FMeXtra HD Radio CDR DVB-T2
DVB-T2
Lite

Satellite

Frequency allocations

C band Ku band L band S band

Digital systems

ADR DAB-S DVB-SH S-DMB SDR

Commercial radio providers

1worldspace Sirius XM Holdings SiriusXM Canada

Codecs

AAC AMR-WB+ HDC HE-AAC MPEG-1 Audio Layer II

Subcarrier signals

AMSS DirectBand PAD RDS/RBDS SCA/SCMO DARC

Related topics

Technical (audio)

Audio data compression Audio signal processing

Technical ( AM stereo
AM stereo
formats)

Belar C-QUAM Harris Kahn-Hazeltine Magnavox

Technical (emission)

AM broadcasting AM expanded band Cable radio Digital radio Error detection and correction FM broadcast band FM broadcasting Multipath propagation Shortwave relay station

Cultural

History of radio International broadcasting

Comparison of r

.