Four-force
   HOME

TheInfoList



OR:

In the
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
, four-force is a
four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
that replaces the classical force.


In special relativity

The four-force is defined as the rate of change in the
four-momentum In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
of a particle with respect to the particle's
proper time In relativity, proper time (from Latin, meaning ''own time'') along a timelike world line is defined as the time as measured by a clock following that line. It is thus independent of coordinates, and is a Lorentz scalar. The proper time interval ...
: :\mathbf = . For a particle of constant invariant mass m > 0, \mathbf = m\mathbf where \mathbf=\gamma(c,\mathbf) is the
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
, so we can relate the four-force with the
four-acceleration In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has ap ...
\mathbf as in
Newton's second law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
: :\mathbf = m\mathbf = \left(\gamma ,\gamma\right). Here := \left(\gamma m \right)= and := \left(\gamma mc^2 \right)= . where \mathbf, \mathbf and \mathbf are
3-space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
vectors describing the velocity, the momentum of the particle and the force acting on it respectively.


Including thermodynamic interactions

From the formulae of the previous section it appears that the time component of the four-force is the power expended, \mathbf\cdot\mathbf, apart from relativistic corrections \gamma/c. This is only true in purely mechanical situations, when heat exchanges vanish or can be neglected. In the full thermo-mechanical case, not only
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
, but also
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
contributes to the change in energy, which is the time component of the energy–momentum covector. The time component of the four-force includes in this case a heating rate h, besides the power \mathbf\cdot\mathbf. Note that work and heat cannot be meaningfully separated, though, as they both carry inertia. This fact extends also to contact forces, that is, to the stress–energy–momentum tensor.C. A. Truesdell, R. A. Toupin: ''The Classical Field Theories'' (in S. Flügge (ed.): ''Encyclopedia of Physics, Vol. III-1'', Springer 1960). §§152–154 and 288–289. Therefore, in thermo-mechanical situations the time component of the four-force is ''not'' proportional to the power \mathbf\cdot\mathbf but has a more generic expression, to be given case by case, which represents the supply of internal energy from the combination of work and heat, and which in the Newtonian limit becomes h + \mathbf\cdot\mathbf.


In general relativity

In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
the relation between four-force, and
four-acceleration In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has ap ...
remains the same, but the elements of the four-force are related to the elements of the
four-momentum In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
through a covariant derivative with respect to proper time. :F^\lambda := \frac = \frac + \Gamma^\lambda _U^\mu P^\nu In addition, we can formulate force using the concept of
coordinate transformation In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
s between different coordinate systems. Assume that we know the correct expression for force in a coordinate system at which the particle is momentarily at rest. Then we can perform a transformation to another system to get the corresponding expression of force. In
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws ...
the transformation will be a Lorentz transformation between coordinate systems moving with a relative constant velocity whereas in
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
it will be a general coordinate transformation. Consider the four-force F^\mu=(F^0, \mathbf) acting on a particle of mass m which is momentarily at rest in a coordinate system. The relativistic force f^\mu in another coordinate system moving with constant velocity v, relative to the other one, is obtained using a Lorentz transformation: : \begin \mathbf &= \mathbf + (\gamma - 1) \mathbf , \\ f^0 &= \gamma \boldsymbol\cdot\mathbf = \boldsymbol\cdot\mathbf. \end where \boldsymbol = \mathbf/c. In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, the expression for force becomes : f^\mu = m with covariant derivative D/d\tau. The equation of motion becomes : m = f^\mu - m \Gamma^\mu_ , where \Gamma^\mu_ is the
Christoffel symbol In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing dist ...
. If there is no external force, this becomes the equation for geodesics in the curved space-time. The second term in the above equation, plays the role of a gravitational force. If f^\alpha_f is the correct expression for force in a freely falling frame \xi^\alpha , we can use then the equivalence principle to write the four-force in an arbitrary coordinate x^\mu : : f^\mu = f^\alpha_f.


Examples

In special relativity, Lorentz four-force (four-force acting to charged particle situated in electromagnetic field) can be expressed as: :F_\mu = qF_U^\nu, where * F_ is the
electromagnetic tensor In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. T ...
, * U^\nu is the
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
, and * q is the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
.


See also

*
four-vector In special relativity, a four-vector (or 4-vector) is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a ...
*
four-velocity In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetimeTechnically, the four-vector should be thought of as residing in the tangent space of a point in spacetime, spacet ...
*
four-acceleration In the theory of relativity, four-acceleration is a four-vector (vector in four-dimensional spacetime) that is analogous to classical acceleration (a three-dimensional vector, see three-acceleration in special relativity). Four-acceleration has ap ...
*
four-momentum In special relativity, four-momentum (also called momentum-energy or momenergy ) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is ...
*
four-gradient In differential geometry, the four-gradient (or 4-gradient) \boldsymbol is the four-vector analogue of the gradient \vec from vector calculus. In special relativity and in quantum mechanics, the four-gradient is used to define the properties and r ...


References

* {{cite book , author = Rindler, Wolfgang , title=Introduction to Special Relativity , url = https://archive.org/details/introductiontosp0000rind , url-access = registration , edition=2nd , location= Oxford , publisher=Oxford University Press , year=1991 , isbn=0-19-853953-3 Four-vectors Force