TheInfoList

A complementary observable aspect of the first law is about heat transfer. Adynamic transfer of energy as heat can be measured empirically by changes in the surroundings of the system of interest by calorimetry. This again requires the existence of adiabatic enclosure of the entire process, system and surroundings, though the separating wall between the surroundings and the system is thermally conductive or radiatively permeable, not adiabatic. A calorimeter can rely on measurement of sensible heat, which requires the existence of thermometers and measurement of temperature change in bodies of known sensible heat capacity under specified conditions; or it can rely on the measurement of latent heat, through measurement of masses of material that change phase, at temperatures fixed by the occurrence of phase changes under specified conditions in bodies of known latent heat of phase change. The calorimeter can be calibrated by adiabatically doing externally determined work on it. The most accurate method is by passing an electric current from outside through a resistance inside the calorimeter. The calibration allows comparison of calorimetric measurement of quantity of heat transferred with quantity of energy transferred as work. According to one textbook, "The most common device for measuring $\Delta U$ is an adiabatic bomb calorimeter." According to another textbook, "Calorimetry is widely used in present day laboratories." According to one opinion, "Most thermodynamic data come from calorimetry..." According to another opinion, "The most common method of measuring "heat" is with a calorimeter."

When the system evolves with transfer of energy as heat, without energy being transferred as work, in an adynamic process, the heat transferred to the system is equal to the increase in its internal energy:

$Q_{A\to B}^{\mathrm {adynamic} }=\Delta U\,.$ ### General case for reversible processes

Heat transfer is practically reversible when it is driven by practically negligibly small temperature gradients. Work transfer is practically reversible when it occurs so slowly that there are no frictional effects within the system; frictional effects outside the system should also be zero if the process is to be globally reversible. For a particular reversible process in general, the work done reversibly on the system, $W_{A\to B}^{\mathrm {path} \,P_{0},\,\mathrm {reversible} }$ , and the heat transferred reversibly to the system, heat transfer. Adynamic transfer of energy as heat can be measured empirically by changes in the surroundings of the system of interest by calorimetry. This again requires the existence of adiabatic enclosure of the entire process, system and surroundings, though the separating wall between the surroundings and the system is thermally conductive or radiatively permeable, not adiabatic. A calorimeter can rely on measurement of sensible heat, which requires the existence of thermometers and measurement of temperature change in bodies of known sensible heat capacity under specified conditions; or it can rely on the measurement of latent heat, through measurement of masses of material that change phase, at temperatures fixed by the occurrence of phase changes under specified conditions in bodies of known latent heat of phase change. The calorimeter can be calibrated by adiabatically doing externally determined work on it. The most accurate method is by passing an electric current from outside through a resistance inside the calorimeter. The calibration allows comparison of calorimetric measurement of quantity of heat transferred with quantity of energy transferred as work. According to one textbook, "The most common device for measuring $\Delta U$ is an adiabatic bomb calorimeter." According to another textbook, "Calorimetry is widely used in present day laboratories." According to one opinion, "Most thermodynamic data come from calorimetry..." According to another opinion, "The most common method of measuring "heat" is with a calorimeter."

When the system evolves with transfer of energy as heat, without energy being transferred as work, in an adynamic process, the heat transferred to the system is equal to the increase in its internal energy: