Fineness ratio
   HOME

TheInfoList



OR:

In
naval architecture Naval architecture, or naval engineering, is an engineering discipline incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the engineering design process, shipbuilding, maintenance, and ...
and
aerospace engineering Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is s ...
, the fineness ratio is the ratio of the length of a body to its maximum width. Shapes that are short and wide have a low fineness ratio, those that are long and narrow have high fineness ratios. Aircraft that spend time at
supersonic Supersonic speed is the speed of an object that exceeds the speed of sound ( Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
speeds, e.g. the
Concorde The Aérospatiale/BAC Concorde () is a retired Franco-British supersonic airliner jointly developed and manufactured by Sud Aviation (later Aérospatiale) and the British Aircraft Corporation (BAC). Studies started in 1954, and France an ...
, generally have high fineness ratios. At speeds below critical mach, one of the primary forms of drag is skin friction. As the name implies, this is drag caused by the interaction of the airflow with the aircraft's skin. To minimize this drag, the aircraft should be designed to minimize the exposed skin area, or "wetted surface". One solution to this problem is constructing an "egg shaped" fuselage, for example as used on the home-built Questair Venture. Theoretical ideal fineness ratios in subsonic aircraft fuselages are typically found at about 6:1, however this may be compromised by other design considerations such as seating or freight size requirements. Because a higher fineness fuselage can have reduced tail surfaces, this ideal ratio can practically be increased to 8:1. Most aircraft have fineness ratios significantly greater than this, however. This is often due to the competing need to place the tail control surfaces at the end of a longer moment arm to increase their effectiveness. Reducing the length of the fuselage would require larger controls, which would offset the drag savings from using the ideal fineness ratio. An example of a high-performance design with an imperfect fineness ratio is the Lancair. In other cases, the designer is forced to use a non-ideal design due to outside factors such as seating arrangements or cargo pallet sizes. Modern
airliner An airliner is a type of aircraft for transporting passengers and air cargo. Such aircraft are most often operated by airlines. Although the definition of an airliner can vary from country to country, an airliner is typically defined as an ai ...
s often have fineness ratios much higher than ideal, a side effect of their cylindrical cross-section which is selected for strength, as well as providing a single width to simplify seating layout and
air cargo Air cargo is any property carried or to be carried in an aircraft. Air cargo comprises air freight, air express and airmail. Aircraft types Different cargo can be transported by passenger, cargo or combi aircraft: * Passenger aircraft use th ...
handling. As an aircraft approaches the
speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as we ...
,
shock wave In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a me ...
s form on areas of greater curvature. These shock waves radiate away energy that the engines must supply, energy that does not go into making the aircraft go faster. This appears to be a new form of drag—referred to as
wave drag In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (re ...
—which peaks at about three times the drag at speeds even slightly below the critical mach. In order to minimize the wave drag, the curvature of the aircraft should be kept to a minimum, which implies much higher fineness ratios. This is why high-speed aircraft have long pointed noses and tails, and cockpit canopies that are flush to the fuselage line. More technically, the best possible performance for a supersonic design is typified by two "perfect shapes", the Sears-Haack body which is pointed at both ends, or the
von Kármán ogive Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination o ...
, which has a blunt tail. Examples of the latter design include the
Concorde The Aérospatiale/BAC Concorde () is a retired Franco-British supersonic airliner jointly developed and manufactured by Sud Aviation (later Aérospatiale) and the British Aircraft Corporation (BAC). Studies started in 1954, and France an ...
,
F-104 Starfighter The Lockheed F-104 Starfighter is an American single-engine, supersonic air superiority fighter which was extensively deployed as a fighter-bomber during the Cold War. Created as a day fighter by Lockheed as one of the " Century Series" of ...
and XB-70 Valkyrie, although to some degree practically every post-World War II
interceptor aircraft An interceptor aircraft, or simply interceptor, is a type of fighter aircraft designed specifically for the defensive interception role against an attacking enemy aircraft, particularly bombers and reconnaissance aircraft. Aircraft that are ...
featured such a design. Missile designers are even less interested in low-speed performance, and missiles generally have higher fineness ratios than most aircraft. The introduction of aircraft with higher fineness ratios also introduced a new form of instability,
inertial coupling In aeronautics, inertia coupling, also referred to as inertial coupling and inertial roll coupling, is a potentially catastrophic phenomenon of high-speed flight which caused the loss of aircraft and pilots before the design features to counter it ...
. As the engines and cockpit moved away from the aircraft's
center of mass In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may ...
, the roll inertia of these masses grew to be able to overwhelm the power of the aerodynamic surfaces. A variety of methods are used to combat this effect, including oversized controls and
stability augmentation system An autopilot is a system used to control the path of an aircraft, marine craft or spacecraft without requiring constant manual control by a human operator. Autopilots do not replace human operators. Instead, the autopilot assists the operator' ...
s.


References


Inline citations

{{reflist


General references


Form Factor
Aerospace engineering Aerodynamics Engineering ratios