Oxaloacetate wpmp.png
   HOME

TheInfoList



OR:

Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon-hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. T ...
with the
chemical formula In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbol ...
HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its
conjugate base A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid donates a proton () to a base—in other words, it is a base with a hydrogen ion added to it, as in the reverse reaction it loses a ...
oxaloacetate, is a metabolic intermediate in many processes that occur in animals. It takes part in gluconeogenesis, the
urea cycle The urea cycle (also known as the ornithine cycle) is a cycle of Biochemistry, biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic. The urea cycle ...
, the
glyoxylate cycle The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrat ...
,
amino acid synthesis Amino acid synthesis is the set of biochemical processes (metabolic pathways) by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to s ...
,
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is co ...
and the
citric acid cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
.


Properties

Oxaloacetic acid undergoes successive deprotonations to give the dianion: :HO2CC(O)CH2CO2H O2CC(O)CH2CO2H + H+, pKa = 2.22 :O2CC(O)CH2CO2H O2CC(O)CH2CO2 + H+, pKa = 3.89 At high pH, the enolizable proton is ionized: :O2CC(O)CH2CO2 O2CC(O)CHCO2 + H+, pKa = 13.03 The
enol In organic chemistry, alkenols (shortened to enols) are a type of reactive structure or intermediate in organic chemistry that is represented as an alkene ( olefin) with a hydroxyl group attached to one end of the alkene double bond (). The t ...
forms of oxaloacetic acid are particularly stable, so much so that the two
tautomers Tautomers () are structural isomers (constitutional isomers) of chemical compounds that readily interconvert. The chemical reaction interconverting the two is called tautomerization. This conversion commonly results from the relocation of a hyd ...
have different melting points (152 °C for the ''cis'' isoform and 184 °C for the ''trans'' isoform). This reaction is catalyzed by the enzyme
oxaloacetate tautomerase In enzymology, an oxaloacetate tautomerase () is an enzyme that catalyzes the chemical reaction :keto-oxaloacetate \rightleftharpoons enol-oxaloacetate Hence, this enzyme has one substrate, keto-oxaloacetate, and one product, enol-oxaloacet ...
. ''trans''-Enol-oxaloacetate also appears when
tartrate A tartrate is a salt or ester of the organic compound tartaric acid, a dicarboxylic acid. The formula of the tartrate dianion is O−OC-CH(OH)-CH(OH)-COO− or C4H4O62−. The main forms of tartrates used commercially are pure crystalline ta ...
is the substrate for
fumarase Fumarase (or fumarate hydratase) is an enzyme () that catalyzes the reversible hydration/dehydration of fumarate to malate. Fumarase comes in two forms: mitochondrial and cytosolic. The mitochondrial isoenzyme is involved in the Krebs cycle and ...
.


Biosynthesis

Oxaloacetate forms in several ways in nature. A principal route is upon
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
of L-malate, catalyzed by
malate dehydrogenase Malate dehydrogenase () (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate ...
, in the citric acid cycle. Malate is also oxidized by succinate dehydrogenase in a slow reaction with the initial product being enol-oxaloacetate.
It also arises from the condensation of pyruvate with carbonic acid, driven by the hydrolysis of ATP: :CH3C(O)CO2 + HCO3 + ATP → O2CCH2C(O)CO2 + ADP + Pi Occurring in the
mesophyll A leaf ( : leaves) is any of the principal appendages of a vascular plant stem, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, s ...
of plants, this process proceeds via
phosphoenolpyruvate Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the ester derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/m ...
, catalysed by
phosphoenolpyruvate carboxylase Phosphoenolpyruvate carboxylase (also known as PEP carboxylase, PEPCase, or PEPC; , PDB ID: 3ZGE) is an enzyme in the family of carboxy-lyases found in plants and some bacteria that catalyzes the addition of bicarbonate (HCO3−) to phosphoenol ...
.
Oxaloacetate can also arise from trans- or de- amination of aspartic acid.


Biochemical functions

Oxaloacetate is an intermediate of the
citric acid cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
, where it reacts with acetyl-CoA to form
citrate Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in the ...
, catalyzed by
citrate synthase The enzyme citrate synthase E.C. 2.3.3.1 (previously 4.1.3.7)] exists in nearly all living cells and stands as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). Citrate synthase is localized within eukaryotic cel ...
. It is also involved in gluconeogenesis, the
urea cycle The urea cycle (also known as the ornithine cycle) is a cycle of Biochemistry, biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic. The urea cycle ...
, the
glyoxylate cycle The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrat ...
,
amino acid synthesis Amino acid synthesis is the set of biochemical processes (metabolic pathways) by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to s ...
, and
fatty acid synthesis In biochemistry, fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is co ...
. Oxaloacetate is also a potent inhibitor of
complex II Succinate dehydrogenase (SDH) or succinate-coenzyme Q reductase (SQR) or respiratory complex II is an enzyme complex, found in many bacterial cells and in the inner mitochondrial membrane of eukaryotes. It is the only enzyme that participates in ...
.


Gluconeogenesis

Gluconeogenesis is a metabolic pathway consisting of a series of eleven enzyme-catalyzed reactions, resulting in the generation of
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
from non-carbohydrates substrates. The beginning of this process takes place in the mitochondrial matrix, where pyruvate molecules are found. A pyruvate molecule is carboxylated by a
pyruvate carboxylase Pyruvate carboxylase (PC) encoded by the gene PC is an enzyme () of the ligase class that catalyzes (depending on the species) the physiologically irreversible carboxylation of pyruvate to form oxaloacetate (OAA). Image:Pyruvic-acid-2D-sk ...
enzyme, activated by a molecule each of ATP and water. This reaction results in the formation of oxaloacetate.
NADH Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an aden ...
reduces oxaloacetate to
malate Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms (L ...
. This transformation is needed to transport the molecule out of the mitochondria. Once in the
cytosol The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells ( intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
, malate is oxidized to oxaloacetate again using NAD+. Then oxaloacetate remains in the cytosol, where the rest of reactions will take place. Oxaloacetate is later decarboxylated and phosphorylated by
phosphoenolpyruvate carboxykinase Phosphoenolpyruvate carboxykinase (, PEPCK) is an enzyme in the lyase family used in the metabolic pathway of gluconeogenesis. It converts oxaloacetate into phosphoenolpyruvate and carbon dioxide. It is found in two forms, cytosolic and mitoch ...
and becomes 2-phosphoenolpyruvate using
guanosine triphosphate Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only d ...
(GTP) as phosphate source. Glucose is obtained after further downstream processing.


Urea cycle

The
urea cycle The urea cycle (also known as the ornithine cycle) is a cycle of Biochemistry, biochemical reactions that produces urea (NH2)2CO from ammonia (NH3). Animals that use this cycle, mainly amphibians and mammals, are called ureotelic. The urea cycle ...
is a metabolic pathway that results in the formation of
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
using one ammonium molecule from degraded amino acids, another ammonium group from aspartate and one bicarbonate molecule. This route commonly occurs in
hepatocytes A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in: * Protein synthesis * Protein storage * Transformation of carbohydrates * Synthesis of cholesterol, ...
. The reactions related to the urea cycle produce
NADH Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an aden ...
, and NADH can be produced in two different ways. One of these uses oxaloacetate. In the cytosol there are fumarate molecules. Fumarate can be transformed into
malate Malic acid is an organic compound with the molecular formula . It is a dicarboxylic acid that is made by all living organisms, contributes to the sour taste of fruits, and is used as a food additive. Malic acid has two stereoisomeric forms (L ...
by the actions of the enzyme fumarase. Malate is acted on by malate dehydrogenase to become oxaloacetate, producing a molecule of NADH. After that, oxaloacetate will be recycled to aspartate, as transaminases prefer these keto acids over the others. This recycling maintains the flow of
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
into the cell.


Glyoxylate cycle

The
glyoxylate cycle The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrat ...
is a variant of the citric acid cycle. It is an
anabolic Anabolism () is the set of metabolic pathways that construct molecules from smaller units. These reactions require energy, known also as an endergonic process. Anabolism is the building-up aspect of metabolism, whereas catabolism is the breaking ...
pathway occurring in
plants Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclude ...
and
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
utilizing the enzymes isocitrate lyase and malate synthase. Some intermediate steps of the cycle are slightly different from the citric acid cycle; nevertheless oxaloacetate has the same function in both processes. This means that oxaloacetate in this cycle also acts as the primary reactant and final product. In fact the oxaloacetate is a net product of the
glyoxylate cycle The glyoxylate cycle, a variation of the tricarboxylic acid cycle, is an anabolic pathway occurring in plants, bacteria, protists, and fungi. The glyoxylate cycle centers on the conversion of acetyl-CoA to succinate for the synthesis of carbohydrat ...
because its loop of the cycle incorporates two molecules of acetyl-CoA.


Fatty acid synthesis

In previous stages acetyl-CoA is transferred from the mitochondria to the cytoplasm where
fatty acid synthase Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the ''FASN'' gene. Fatty acid synthase is a multi-enzyme protein that catalyzes fatty acid synthesis. It is not a single enzyme but a whole enzymatic system composed of two iden ...
resides. The acetyl-CoA is transported as a citrate, which has been previously formed in the mitochondrial matrix from acetyl-coA and oxaloacetate. This reaction usually initiates the citric acid cycle, but when there is no need of energy it is transported to the cytoplasm where it is broken down to cytoplasmatic acetyl -CoA and oxaloacetate. Another part of the cycle requires NADPH for the synthesis of fatty acids. Part of this reducing power is generated when the cytosolic oxaloacetate is returned to the mitochondria as long as the internal mitochondrial layer is non-permeable for oxaloacetate. Firstly the oxaloacetate is reduced to malate using NADH. Then the malate is decarboxylated to pyruvate. Now this pyruvate can easily enter the mitochondria, where it is carboxylated again to oxaloacetate by pyruvate carboxylase. In this way, the transfer of acetyl-CoA that is from the mitochondria into the cytoplasm produces a molecule of NADH. The overall reaction, which is spontaneous, may be summarized as: :HCO3 + ATP + acetyl-CoA → ADP + Pi + malonyl-CoA


Amino acid synthesis

Six essential amino acids and three nonessential are synthesized from Amino acid synthesis#Aspartate, oxaloacetate and pyruvate. Aspartate and alanine are formed from oxaloacetate and pyruvate, respectively, by transamination from glutamate. Asparagine is synthesized by amidation of aspartate, with glutamine donating the NH4. These are nonessential amino acids, and their simple biosynthetic pathways occur in all organisms. Methionine, threonine, lysine, isoleucine, valine, and leucine are essential amino acids in humans and most vertebrates. Their biosynthetic pathways in bacteria are complex and interconnected.


Oxalate biosynthesis

Oxaloacetate produces oxalate by hydrolysis. :oxaloacetate + H2O oxalate + acetate This process is catalyzed by the enzyme oxaloacetase. This enzyme is seen in plants, but is not known in the animal kingdom.Xu, Hua-Wei. "Oxalate accumulation and regulations is independent of glycolate oxidase in rice leaves" Journal of Experimental Botany, Vol 57, No. 9 pp. 1899-1908, 2006


Interactive pathway map


See also

*Dioxosuccinic acid * Glycolysis * Oxidative phosphorylation * Citric acid cycle


References

{{Amino acid metabolism intermediates Citric acid cycle compounds Dicarboxylic acids Alpha-keto acids Beta-keto acids