Number of patients on Anti Retroviral Treatment in Mozambique 2003-2011.jpg
   HOME

TheInfoList



OR:

A number is a
mathematical object A mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an ''object'' is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical p ...
used to
count Count (feminine: countess) is a historical title of nobility in certain European countries, varying in relative status, generally of middling rank in the hierarchy of nobility. Pine, L. G. ''Titles: How the King Became His Majesty''. New York: ...
, measure, and
label A label (as distinct from signage) is a piece of paper, plastic film, cloth, metal, or other material affixed to a container or product, on which is written or printed information or symbols about the product or item. Information printed ...
. The original examples are the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s 1, 2, 3, 4, and so forth. Numbers can be represented in language with
number words In linguistics, a numeral (or number word) in the broadest sense is a word or phrase that describes a numerical quantity. Some theories of grammar use the word "numeral" to refer to cardinal numbers that act as a determiner that specify the quant ...
. More universally, individual numbers can be represented by symbols, called ''numerals''; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a
numeral system A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbo ...
, which is an organized way to represent any number. The most common numeral system is the
Hindu–Arabic numeral system The Hindu–Arabic numeral system or Indo-Arabic numeral system Audun HolmeGeometry: Our Cultural Heritage 2000 (also called the Hindu numeral system or Arabic numeral system) is a positional decimal numeral system, and is the most common syste ...
, which allows for the representation of any number using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels (as with
telephone number A telephone number is a sequence of digits assigned to a landline telephone subscriber station connected to a telephone line or to a wireless electronic telephony device, such as a radio telephone or a mobile telephone, or to other devices f ...
s), for ordering (as with serial numbers), and for codes (as with
ISBN The International Standard Book Number (ISBN) is a numeric commercial book identifier that is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency. An ISBN is assigned to each separate edition an ...
s). In common usage, a ''numeral'' is not clearly distinguished from the ''number'' that it represents. In mathematics, the notion of a number has been extended over the centuries to include
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
(0), negative numbers,
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s such as one half \left(\tfrac\right),
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s such as the square root of 2 \left(\sqrt\right) and , and
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s which extend the real numbers with a square root of (and its combinations with real numbers by adding or subtracting its multiples). Calculations with numbers are done with
arithmetical operations Arithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th ce ...
, the most familiar being addition, subtraction, multiplication,
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
, and
exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to r ...
. Their study or usage is called arithmetic, a term which may also refer to
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, the study of the properties of numbers. Besides their practical uses, numbers have cultural significance throughout the world. For example, in Western society, the number 13 is often regarded as unlucky, and "
a million ''A Million'' () is 2009 South Korean thriller film. Plot Eight people enter a reality TV show to win (approximately ) if they survive 7 days in the Australian Outback. But they don't know the game is murderous trap by an insane TV director. Cas ...
" may signify "a lot" rather than an exact quantity. Though it is now regarded as
pseudoscience Pseudoscience consists of statements, beliefs, or practices that claim to be both scientific and factual but are incompatible with the scientific method. Pseudoscience is often characterized by contradictory, exaggerated or unfalsifiable clai ...
, belief in a mystical significance of numbers, known as numerology, permeated ancient and medieval thought. Numerology heavily influenced the development of Greek mathematics, stimulating the investigation of many problems in number theory which are still of interest today. During the 19th century, mathematicians began to develop many different abstractions which share certain properties of numbers, and may be seen as extending the concept. Among the first were the
hypercomplex number In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group represen ...
s, which consist of various extensions or modifications of the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
system. In modern mathematics, number systems are considered important special examples of more general algebraic structures such as
rings Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
and
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
, and the application of the term "number" is a matter of convention, without fundamental significance.


History


Numerals

Numbers should be distinguished from numerals, the symbols used to represent numbers. The Egyptians invented the first ciphered numeral system, and the Greeks followed by mapping their counting numbers onto Ionian and Doric alphabets. Roman numerals, a system that used combinations of letters from the Roman alphabet, remained dominant in Europe until the spread of the superior
Hindu–Arabic numeral system The Hindu–Arabic numeral system or Indo-Arabic numeral system Audun HolmeGeometry: Our Cultural Heritage 2000 (also called the Hindu numeral system or Arabic numeral system) is a positional decimal numeral system, and is the most common syste ...
around the late 14th century, and the Hindu–Arabic numeral system remains the most common system for representing numbers in the world today. The key to the effectiveness of the system was the symbol for
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
, which was developed by ancient Indian mathematicians around 500 AD.


First use of numbers

Bones and other artifacts have been discovered with marks cut into them that many believe are
tally marks Tally marks, also called hash marks, are a unary numeral system ( arguably). They are a form of numeral used for counting. They are most useful in counting or tallying ongoing results, such as the score in a game or sport, as no intermediate ...
. These tally marks may have been used for counting elapsed time, such as numbers of days, lunar cycles or keeping records of quantities, such as of animals. A tallying system has no concept of place value (as in modern decimal notation), which limits its representation of large numbers. Nonetheless, tallying systems are considered the first kind of abstract numeral system. The first known system with place value was the Mesopotamian base 60 system ( BC) and the earliest known base 10 system dates to 3100 BC in
Egypt Egypt ( ar, مصر , ), officially the Arab Republic of Egypt, is a transcontinental country spanning the northeast corner of Africa and southwest corner of Asia via a land bridge formed by the Sinai Peninsula. It is bordered by the Medit ...
.


Zero

The first known documented use of
zero 0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usual ...
dates to AD 628, and appeared in the ''
Brāhmasphuṭasiddhānta The ''Brāhmasphuṭasiddhānta'' ("Correctly Established Doctrine of Brahma", abbreviated BSS) is the main work of Brahmagupta, written c. 628. This text of mathematical astronomy contains significant mathematical content, including a good underst ...
'', the main work of the
Indian mathematician Indian mathematics emerged in the Indian subcontinent from 1200 BCE until the end of the 18th century. In the classical period of Indian mathematics (400 CE to 1200 CE), important contributions were made by scholars like Aryabhata, Brahmagupta ...
Brahmagupta. He treated 0 as a number and discussed operations involving it, including
division Division or divider may refer to: Mathematics *Division (mathematics), the inverse of multiplication *Division algorithm, a method for computing the result of mathematical division Military *Division (military), a formation typically consisting ...
. By this time (the 7th century) the concept had clearly reached Cambodia as
Khmer numerals Khmer numerals are the numerals used in the Khmer language. They have been in use since at least the early 7th century, with the earliest known use being on a stele dated to AD 604 found in Prasat Bayang, near Angkor Borei, Cambodia. Numera ...
, and documentation shows the idea later spreading to China and the Islamic world. Brahmagupta's ''Brāhmasphuṭasiddhānta'' is the first book that mentions zero as a number, hence Brahmagupta is usually considered the first to formulate the concept of zero. He gave rules of using zero with negative and positive numbers, such as "zero plus a positive number is a positive number, and a negative number plus zero is the negative number." The ''Brāhmasphuṭasiddhānta'' is the earliest known text to treat zero as a number in its own right, rather than as simply a placeholder digit in representing another number as was done by the Babylonians or as a symbol for a lack of quantity as was done by Ptolemy and the Romans. The use of 0 as a number should be distinguished from its use as a placeholder numeral in
place-value system Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the ...
s. Many ancient texts used 0. Babylonian and Egyptian texts used it. Egyptians used the word ''nfr'' to denote zero balance in
double entry accounting A double is a look-alike or doppelgänger; one person or being that resembles another. Double, The Double or Dubble may also refer to: Film and television * Double (filmmaking), someone who substitutes for the credited actor of a character * ...
. Indian texts used a
Sanskrit Sanskrit (; attributively , ; nominally , , ) is a classical language belonging to the Indo-Aryan branch of the Indo-European languages. It arose in South Asia after its predecessor languages had diffused there from the northwest in the late ...
word or to refer to the concept of ''void''. In mathematics texts this word often refers to the number zero. In a similar vein,
Pāṇini , era = ;;6th–5th century BCE , region = Indian philosophy , main_interests = Grammar, linguistics , notable_works = ' ( Classical Sanskrit) , influenced= , notable_ideas=Descriptive linguistics (Devanaga ...
(5th century BC) used the null (zero) operator in the '' Ashtadhyayi'', an early example of an algebraic grammar for the Sanskrit language (also see
Pingala Acharya Pingala ('; c. 3rd2nd century BCE) was an ancient Indian poet and mathematician, and the author of the ' (also called the ''Pingala-sutras''), the earliest known treatise on Sanskrit prosody. The ' is a work of eight chapters in the la ...
). There are other uses of zero before Brahmagupta, though the documentation is not as complete as it is in the ''Brāhmasphuṭasiddhānta''. Records show that the
Ancient Greeks Ancient Greece ( el, Ἑλλάς, Hellás) was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity ( AD 600), that comprised a loose collection of cult ...
seemed unsure about the status of 0 as a number: they asked themselves "how can 'nothing' be something?" leading to interesting
philosophical Philosophy (from , ) is the systematized study of general and fundamental questions, such as those about existence, reason, knowledge, values, mind, and language. Such questions are often posed as problems to be studied or resolved. Some ...
and, by the Medieval period, religious arguments about the nature and existence of 0 and the
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or " void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often di ...
. The
paradoxes A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true premises, leads to a seemingly self-contradictory or a logically u ...
of
Zeno of Elea Zeno of Elea (; grc, Ζήνων ὁ Ἐλεᾱ́της; ) was a pre-Socratic Greek philosopher of Magna Graecia and a member of the Eleatic School founded by Parmenides. Aristotle called him the inventor of the dialectic. He is best known ...
depend in part on the uncertain interpretation of 0. (The ancient Greeks even questioned whether  was a number.) The late
Olmec The Olmecs () were the earliest known major Mesoamerican civilization. Following a progressive development in Soconusco, they occupied the tropical lowlands of the modern-day Mexican states of Veracruz and Tabasco. It has been speculated that ...
people of south-central Mexico began to use a symbol for zero, a shell glyph, in the New World, possibly by the but certainly by 40 BC, which became an integral part of
Maya numerals The Mayan numeral system was the system to represent numbers and calendar dates in the Maya civilization The Maya civilization () of the Mesoamerican people is known by its ancient temples and glyphs. Its Maya script is the most sop ...
and the
Maya calendar The Maya calendar is a system of calendars used in pre-Columbian Mesoamerica and in many modern communities in the Guatemalan highlands, Veracruz, Oaxaca and Chiapas, Mexico. The essentials of the Maya calendar are based upon a system which had ...
. Maya arithmetic used base 4 and base 5 written as base 20.
George I. Sánchez George Isidore Sánchez (1906–1972) was a pioneer in American educational scholarship and civil rights activism, originally from the state of New Mexico. He served on the faculty of the University of New Mexico, held several concurrent teaching, ...
in 1961 reported a base 4, base 5 "finger" abacus. By 130 AD,
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importance ...
, influenced by
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
and the Babylonians, was using a symbol for 0 (a small circle with a long overbar) within a
sexagesimal Sexagesimal, also known as base 60 or sexagenary, is a numeral system with sixty as its base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in a modified form ...
numeral system otherwise using alphabetic
Greek numerals Greek numerals, also known as Ionic, Ionian, Milesian, or Alexandrian numerals, are a system of writing numbers using the letters of the Greek alphabet. In modern Greece, they are still used for ordinal numbers and in contexts similar to tho ...
. Because it was used alone, not as just a placeholder, this Hellenistic zero was the first ''documented'' use of a true zero in the Old World. In later
Byzantine The Byzantine Empire, also referred to as the Eastern Roman Empire or Byzantium, was the continuation of the Roman Empire primarily in its eastern provinces during Late Antiquity and the Middle Ages, when its capital city was Constantinopl ...
manuscripts of his ''Syntaxis Mathematica'' (''Almagest''), the Hellenistic zero had morphed into the
Greek letter The Greek alphabet has been used to write the Greek language since the late 9th or early 8th century BCE. It is derived from the earlier Phoenician alphabet, and was the earliest known alphabetic script to have distinct letters for vowels as ...
Omicron Omicron (; uppercase Ο, lowercase ο, ell, όμικρον) is the 15th letter of the Greek alphabet. This letter is derived from the Phoenician letter ayin: . In classical Greek, omicron represented the close-mid back rounded vowel in contras ...
(otherwise meaning 70). Another true zero was used in tables alongside Roman numerals by 525 (first known use by
Dionysius Exiguus Dionysius Exiguus (Latin for "Dionysius the Humble", Greek: Διονύσιος; – ) was a 6th-century Eastern Roman monk born in Scythia Minor. He was a member of a community of Scythian monks concentrated in Tomis (present day Constanța ...
), but as a word, meaning ''nothing'', not as a symbol. When division produced 0 as a remainder, , also meaning ''nothing'', was used. These medieval zeros were used by all future medieval computists (calculators of
Easter Easter,Traditional names for the feast in English are "Easter Day", as in the '' Book of Common Prayer''; "Easter Sunday", used by James Ussher''The Whole Works of the Most Rev. James Ussher, Volume 4'') and Samuel Pepys''The Diary of Samuel ...
). An isolated use of their initial, N, was used in a table of Roman numerals by Bede or a colleague about 725, a true zero symbol.


Negative numbers

The abstract concept of negative numbers was recognized as early as 100–50 BC in China. ''
The Nine Chapters on the Mathematical Art ''The Nine Chapters on the Mathematical Art'' () is a Chinese mathematics book, composed by several generations of scholars from the 10th–2nd century BCE, its latest stage being from the 2nd century CE. This book is one of the earliest sur ...
'' contains methods for finding the areas of figures; red rods were used to denote positive coefficients, black for negative. The first reference in a Western work was in the 3rd century AD in Greece. Diophantus referred to the equation equivalent to (the solution is negative) in '' Arithmetica'', saying that the equation gave an absurd result. During the 600s, negative numbers were in use in India to represent debts. Diophantus' previous reference was discussed more explicitly by Indian mathematician Brahmagupta, in ''
Brāhmasphuṭasiddhānta The ''Brāhmasphuṭasiddhānta'' ("Correctly Established Doctrine of Brahma", abbreviated BSS) is the main work of Brahmagupta, written c. 628. This text of mathematical astronomy contains significant mathematical content, including a good underst ...
'' in 628, who used negative numbers to produce the general form
quadratic formula In elementary algebra, the quadratic formula is a formula that provides the solution(s) to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring (direct factoring, g ...
that remains in use today. However, in the 12th century in India, Bhaskara gives negative roots for quadratic equations but says the negative value "is in this case not to be taken, for it is inadequate; people do not approve of negative roots". European mathematicians, for the most part, resisted the concept of negative numbers until the 17th century, although
Fibonacci Fibonacci (; also , ; – ), also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano ('Leonardo the Traveller from Pisa'), was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Wester ...
allowed negative solutions in financial problems where they could be interpreted as debts (chapter 13 of ''
Liber Abaci ''Liber Abaci'' (also spelled as ''Liber Abbaci''; "The Book of Calculation") is a historic 1202 Latin manuscript on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. ''Liber Abaci'' was among the first Western books to describe ...
'', 1202) and later as losses (in ).
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
called them false roots as they cropped up in algebraic polynomials yet he found a way to swap true roots and false roots as well. At the same time, the Chinese were indicating negative numbers by drawing a diagonal stroke through the right-most non-zero digit of the corresponding positive number's numeral. The first use of negative numbers in a European work was by
Nicolas Chuquet Nicolas Chuquet (; born ; died ) was a French mathematician. He invented his own notation for algebraic concepts and exponentiation. He may have been the first mathematician to recognize zero and negative numbers as exponents. In 1475, Jehan A ...
during the 15th century. He used them as exponents, but referred to them as "absurd numbers". As recently as the 18th century, it was common practice to ignore any negative results returned by equations on the assumption that they were meaningless.


Rational numbers

It is likely that the concept of fractional numbers dates to
prehistoric times Prehistory, also known as pre-literary history, is the period of human history between the use of the first stone tools by hominins 3.3 million years ago and the beginning of recorded history with the invention of writing systems. The use of ...
. The Ancient Egyptians used their Egyptian fraction notation for rational numbers in mathematical texts such as the Rhind Mathematical Papyrus and the Kahun Papyrus. Classical Greek and Indian mathematicians made studies of the theory of rational numbers, as part of the general study of
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
. The best known of these is Euclid's ''Elements'', dating to roughly 300 BC. Of the Indian texts, the most relevant is the
Sthananga Sutra Sthananga Sutra (Sanskrit: Sthānāṅgasūtra Prakrit: Ṭhāṇaṃgasutta) (c. 3rd-4th century CE) forms part of the first eleven Angas of the Jaina Canon which have survived despite the bad effects of this Hundavasarpini kala as per the Ś ...
, which also covers number theory as part of a general study of mathematics. The concept of
decimal fraction The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers of the Hindu–Arabic num ...
s is closely linked with decimal place-value notation; the two seem to have developed in tandem. For example, it is common for the Jain math sutra to include calculations of decimal-fraction approximations to pi or the square root of 2. Similarly, Babylonian math texts used sexagesimal (base 60) fractions with great frequency.


Irrational numbers

The earliest known use of irrational numbers was in the
Indian Indian or Indians may refer to: Peoples South Asia * Indian people, people of Indian nationality, or people who have an Indian ancestor ** Non-resident Indian, a citizen of India who has temporarily emigrated to another country * South Asia ...
Sulba Sutras The ''Shulva Sutras'' or ''Śulbasūtras'' (Sanskrit: शुल्बसूत्र; ': "string, cord, rope") are sutra texts belonging to the Śrauta ritual and containing geometry related to fire-altar construction. Purpose and origins The ...
composed between 800 and 500 BC. The first existence proofs of irrational numbers is usually attributed to
Pythagoras Pythagoras of Samos ( grc, Πυθαγόρας ὁ Σάμιος, Pythagóras ho Sámios, Pythagoras the Samian, or simply ; in Ionian Greek; ) was an ancient Ionian Greek philosopher and the eponymous founder of Pythagoreanism. His politi ...
, more specifically to the
Pythagorean Pythagorean, meaning of or pertaining to the ancient Ionian mathematician, philosopher, and music theorist Pythagoras, may refer to: Philosophy * Pythagoreanism, the esoteric and metaphysical beliefs purported to have been held by Pythagoras * Ne ...
Hippasus of Metapontum Hippasus of Metapontum (; grc-gre, Ἵππασος ὁ Μεταποντῖνος, ''Híppasos''; c. 530 – c. 450 BC) was a Greek philosopher and early follower of Pythagoras. Little is known about his life or his beliefs, but he is sometimes c ...
, who produced a (most likely geometrical) proof of the irrationality of the square root of 2. The story goes that Hippasus discovered irrational numbers when trying to represent the square root of 2 as a fraction. However, Pythagoras believed in the absoluteness of numbers, and could not accept the existence of irrational numbers. He could not disprove their existence through logic, but he could not accept irrational numbers, and so, allegedly and frequently reported, he sentenced Hippasus to death by drowning, to impede spreading of this disconcerting news. The 16th century brought final European acceptance of negative integral and fractional numbers. By the 17th  century, mathematicians generally used decimal fractions with modern notation. It was not, however, until the 19th century that mathematicians separated irrationals into algebraic and transcendental parts, and once more undertook the scientific study of irrationals. It had remained almost dormant since
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
. In 1872, the publication of the theories of
Karl Weierstrass Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics ...
(by his pupil E. Kossak),
Eduard Heine Heinrich Eduard Heine (16 March 1821 – 21 October 1881) was a German mathematician. Heine became known for results on special functions and in real analysis. In particular, he authored an important treatise on spherical harmonics and Legen ...
,
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
, and Richard Dedekind was brought about. In 1869, Charles Méray had taken the same point of departure as Heine, but the theory is generally referred to the year 1872. Weierstrass's method was completely set forth by
Salvatore Pincherle Salvatore Pincherle (March 11, 1853 – July 10, 1936) was an Italian mathematician. He contributed significantly to (and arguably helped to found) the field of functional analysis, established the Italian Mathematical Union (Italian: "''Unio ...
(1880), and Dedekind's has received additional prominence through the author's later work (1888) and endorsement by
Paul Tannery Paul Tannery (20 December 1843 – 27 November 1904) was a French mathematician and historian of mathematics. He was the older brother of mathematician Jules Tannery, to whose ''Notions Mathématiques'' he contributed an historical chapter. Thou ...
(1894). Weierstrass, Cantor, and Heine base their theories on infinite series, while Dedekind founds his on the idea of a cut (Schnitt) in the system of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s, separating all
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s into two groups having certain characteristic properties. The subject has received later contributions at the hands of Weierstrass, Kronecker, and Méray. The search for roots of
quintic In algebra, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other words, a ...
and higher degree equations was an important development, the
Abel–Ruffini theorem In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means th ...
( Ruffini 1799,
Abel Abel ''Hábel''; ar, هابيل, Hābīl is a Biblical figure in the Book of Genesis within Abrahamic religions. He was the younger brother of Cain, and the younger son of Adam and Eve, the first couple in Biblical history. He was a shepherd ...
1824) showed that they could not be solved by radicals (formulas involving only arithmetical operations and roots). Hence it was necessary to consider the wider set of
algebraic numbers An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
(all solutions to polynomial equations). Galois (1832) linked polynomial equations to
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
giving rise to the field of
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
.
Continued fraction In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer ...
s, closely related to irrational numbers (and due to Cataldi, 1613), received attention at the hands of Euler, and at the opening of the 19th century were brought into prominence through the writings of
Joseph Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangiareal number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s is uncountable, uncountably infinite but the set of all algebraic numbers is countable, countably infinite, so there is an uncountably infinite number of transcendental numbers.


Infinity and infinitesimals

The earliest known conception of mathematical infinity appears in the Yajur Veda, an ancient Indian script, which at one point states, "If you remove a part from infinity or add a part to infinity, still what remains is infinity." Infinity was a popular topic of philosophical study among the Jain mathematicians c. 400 BC. They distinguished between five types of infinity: infinite in one and two directions, infinite in area, infinite everywhere, and infinite perpetually. The symbol \text is often used to represent an infinite quantity. Aristotle defined the traditional Western notion of mathematical infinity. He distinguished between actual infinity and potential infinity—the general consensus being that only the latter had true value. Galileo Galilei's ''Two New Sciences'' discussed the idea of bijection, one-to-one correspondences between infinite sets. But the next major advance in the theory was made by
Georg Cantor Georg Ferdinand Ludwig Philipp Cantor ( , ;  – January 6, 1918) was a German mathematician. He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of ...
; in 1895 he published a book about his new set theory, introducing, among other things, transfinite numbers and formulating the continuum hypothesis. In the 1960s, Abraham Robinson showed how infinitely large and infinitesimal numbers can be rigorously defined and used to develop the field of nonstandard analysis. The system of hyperreal numbers represents a rigorous method of treating the ideas about infinity, infinite and infinitesimal numbers that had been used casually by mathematicians, scientists, and engineers ever since the invention of infinitesimal calculus by Isaac Newton, Newton and Gottfried Leibniz, Leibniz. A modern geometrical version of infinity is given by projective geometry, which introduces "ideal points at infinity", one for each spatial direction. Each family of parallel lines in a given direction is postulated to converge to the corresponding ideal point. This is closely related to the idea of vanishing points in perspective (graphical), perspective drawing.


Complex numbers

The earliest fleeting reference to square roots of negative numbers occurred in the work of the mathematician and inventor Heron of Alexandria in the , when he considered the volume of an impossible frustum of a pyramid. They became more prominent when in the 16th century closed formulas for the roots of third and fourth degree polynomials were discovered by Italian mathematicians such as Niccolò Fontana Tartaglia and Gerolamo Cardano. It was soon realized that these formulas, even if one was only interested in real solutions, sometimes required the manipulation of square roots of negative numbers. This was doubly unsettling since they did not even consider negative numbers to be on firm ground at the time. When
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Ma ...
coined the term "imaginary" for these quantities in 1637, he intended it as derogatory. (See imaginary number for a discussion of the "reality" of complex numbers.) A further source of confusion was that the equation :\left ( \sqrt\right )^2 =\sqrt\sqrt=-1 seemed capriciously inconsistent with the algebraic identity :\sqrt\sqrt=\sqrt, which is valid for positive real numbers ''a'' and ''b'', and was also used in complex number calculations with one of ''a'', ''b'' positive and the other negative. The incorrect use of this identity, and the related identity :\frac=\sqrt in the case when both ''a'' and ''b'' are negative even bedeviled Euler. This difficulty eventually led him to the convention of using the special symbol ''i'' in place of \sqrt to guard against this mistake. The 18th century saw the work of Abraham de Moivre and Leonhard Euler. De Moivre's formula (1730) states: :(\cos \theta + i\sin \theta)^ = \cos n \theta + i\sin n \theta while Euler's formula of complex analysis (1748) gave us: :\cos \theta + i\sin \theta = e ^. The existence of complex numbers was not completely accepted until Caspar Wessel described the geometrical interpretation in 1799. Carl Friedrich Gauss rediscovered and popularized it several years later, and as a result the theory of complex numbers received a notable expansion. The idea of the graphic representation of complex numbers had appeared, however, as early as 1685, in John Wallis, Wallis's ''De algebra tractatus''. Also in 1799, Gauss provided the first generally accepted proof of the fundamental theorem of algebra, showing that every polynomial over the complex numbers has a full set of solutions in that realm. The general acceptance of the theory of complex numbers is due to the labors of Augustin Louis Cauchy and Niels Henrik Abel, and especially the latter, who was the first to boldly use complex numbers with a success that is well known. Carl Friedrich Gauss, Gauss studied Gaussian integer, complex numbers of the form , where ''a'' and ''b'' are integral, or rational (and ''i'' is one of the two roots of ). His student, Gotthold Eisenstein, studied the type , where ''ω'' is a complex root of Other such classes (called cyclotomic fields) of complex numbers derive from the roots of unity for higher values of ''k''. This generalization is largely due to Ernst Kummer, who also invented ideal numbers, which were expressed as geometrical entities by Felix Klein in 1893. In 1850 Victor Alexandre Puiseux took the key step of distinguishing between poles and branch points, and introduced the concept of mathematical singularity, essential singular points. This eventually led to the concept of the extended complex plane.


Prime numbers

Prime numbers have been studied throughout recorded history. Euclid devoted one book of the ''Elements'' to the theory of primes; in it he proved the infinitude of the primes and the fundamental theorem of arithmetic, and presented the Euclidean algorithm for finding the greatest common divisor of two numbers. In 240 BC, Eratosthenes used the Sieve of Eratosthenes to quickly isolate prime numbers. But most further development of the theory of primes in Europe dates to the Renaissance and later eras. In 1796, Adrien-Marie Legendre conjectured the prime number theorem, describing the asymptotic distribution of primes. Other results concerning the distribution of the primes include Euler's proof that the sum of the reciprocals of the primes diverges, and the Goldbach conjecture, which claims that any sufficiently large even number is the sum of two primes. Yet another conjecture related to the distribution of prime numbers is the Riemann hypothesis, formulated by Bernhard Riemann in 1859. The prime number theorem was finally proved by Jacques Hadamard and Charles de la Vallée-Poussin in 1896. Goldbach and Riemann's conjectures remain unproven and unrefuted.


Main classification

Numbers can be classified into set (mathematics), sets, called number sets or number systems, such as the natural numbers and the real numbers. The main number systems are as follows: Each of these number system is a subset of the next one. So, for example, a rational number is also a real number, and every real number is also a complex number. This can be expressed symbolically as :\mathbb \subset \mathbb \subset \mathbb \subset \mathbb \subset \mathbb. A more complete list of number sets appears in the following diagram.


Natural numbers

The most familiar numbers are the
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''cardinal ...
s (sometimes called whole numbers or counting numbers): 1, 2, 3, and so on. Traditionally, the sequence of natural numbers started with 1 (0 was not even considered a number for the Ancient Greeks.) However, in the 19th century, set theory, set theorists and other mathematicians started including 0 (cardinality of the empty set, i.e. 0 elements, where 0 is thus the smallest cardinal number) in the set of natural numbers. Today, different mathematicians use the term to describe both sets, including 0 or not. The mathematical symbol for the set of all natural numbers is N, also written \mathbb, and sometimes \mathbb_0 or \mathbb_1 when it is necessary to indicate whether the set should start with 0 or 1, respectively. In the base 10 numeral system, in almost universal use today for mathematical operations, the symbols for natural numbers are written using ten numerical digit, digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The Radix, radix or base is the number of unique numerical digits, including zero, that a numeral system uses to represent numbers (for the decimal system, the radix is 10). In this base 10 system, the rightmost digit of a natural number has a place value of 1, and every other digit has a place value ten times that of the place value of the digit to its right. In set theory, which is capable of acting as an axiomatic foundation for modern mathematics, natural numbers can be represented by classes of equivalent sets. For instance, the number 3 can be represented as the class of all sets that have exactly three elements. Alternatively, in Peano Arithmetic, the number 3 is represented as sss0, where s is the "successor" function (i.e., 3 is the third successor of 0). Many different representations are possible; all that is needed to formally represent 3 is to inscribe a certain symbol or pattern of symbols three times.


Integers

The negative of a positive integer is defined as a number that produces 0 when it is added to the corresponding positive integer. Negative numbers are usually written with a negative sign (a minus sign). As an example, the negative of 7 is written −7, and . When the set (mathematics), set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, Z also written Blackboard bold, \mathbb. Here the letter Z comes . The set of integers forms a ring (mathematics), ring with the operations addition and multiplication. The natural numbers form a subset of the integers. As there is no common standard for the inclusion or not of zero in the natural numbers, the natural numbers without zero are commonly referred to as positive integers, and the natural numbers with zero are referred to as non-negative integers.


Rational numbers

A rational number is a number that can be expressed as a fraction (mathematics), fraction with an integer numerator and a positive integer denominator. Negative denominators are allowed, but are commonly avoided, as every rational number is equal to a fraction with positive denominator. Fractions are written as two integers, the numerator and the denominator, with a dividing bar between them. The fraction represents ''m'' parts of a whole divided into ''n'' equal parts. Two different fractions may correspond to the same rational number; for example and are equal, that is: : = . In general, : = if and only if = . If the absolute value of ''m'' is greater than ''n'' (supposed to be positive), then the absolute value of the fraction is greater than 1. Fractions can be greater than, less than, or equal to 1 and can also be positive, negative, or 0. The set of all rational numbers includes the integers since every integer can be written as a fraction with denominator 1. For example −7 can be written . The symbol for the rational numbers is Q (for ''quotient''), also written Blackboard bold, \mathbb.


Real numbers

The symbol for the real numbers is R, also written as \mathbb. They include all the measuring numbers. Every real number corresponds to a point on the number line. The following paragraph will focus primarily on positive real numbers. The treatment of negative real numbers is according to the general rules of arithmetic and their denotation is simply prefixing the corresponding positive numeral by a minus sign, e.g. −123.456. Most real numbers can only be ''approximated'' by decimal numerals, in which a decimal point is placed to the right of the digit with place value 1. Each digit to the right of the decimal point has a place value one-tenth of the place value of the digit to its left. For example, 123.456 represents , or, in words, one hundred, two tens, three ones, four tenths, five hundredths, and six thousandths. A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are the prime factors of 10, the base of the decimal system. Thus, for example, one half is 0.5, one fifth is 0.2, one-tenth is 0.1, and one fiftieth is 0.02. Representing other real numbers as decimals would require an infinite sequence of digits to the right of the decimal point. If this infinite sequence of digits follows a pattern, it can be written with an ellipsis or another notation that indicates the repeating pattern. Such a decimal is called a repeating decimal. Thus can be written as 0.333..., with an ellipsis to indicate that the pattern continues. Forever repeating 3s are also written as 0.. It turns out that these repeating decimals (including the Trailing zero, repetition of zeroes) denote exactly the rational numbers, i.e., all rational numbers are also real numbers, but it is not the case that every real number is rational. A real number that is not rational is called irrational number, irrational. A famous irrational real number is the , the ratio of the circumference of any circle to its diameter. When pi is written as :\pi = 3.14159265358979\dots, as it sometimes is, the ellipsis does not mean that the decimals repeat (they do not), but rather that there is no end to them. It has been proved that proof that pi is irrational, is irrational. Another well-known number, proven to be an irrational real number, is :\sqrt = 1.41421356237\dots, the square root of 2, that is, the unique positive real number whose square is 2. Both these numbers have been approximated (by computer) to trillions of digits. Not only these prominent examples but almost all real numbers are irrational and therefore have no repeating patterns and hence no corresponding decimal numeral. They can only be approximated by decimal numerals, denoting rounding, rounded or truncation, truncated real numbers. Any rounded or truncated number is necessarily a rational number, of which there are only countably many. All measurements are, by their nature, approximations, and always have a margin of error. Thus 123.456 is considered an approximation of any real number greater or equal to and strictly less than (rounding to 3 decimals), or of any real number greater or equal to and strictly less than (truncation after the 3. decimal). Digits that suggest a greater accuracy than the measurement itself does, should be removed. The remaining digits are then called significant digits. For example, measurements with a ruler can seldom be made without a margin of error of at least 0.001 Metre, m. If the sides of a rectangle are measured as 1.23 m and 4.56 m, then multiplication gives an area for the rectangle between and . Since not even the second digit after the decimal place is preserved, the following digits are not ''significant''. Therefore, the result is usually rounded to 5.61. Just as the same fraction can be written in more than one way, the same real number may have more than one decimal representation. For example, 0.999..., 1.0, 1.00, 1.000, ..., all represent the natural number 1. A given real number has only the following decimal representations: an approximation to some finite number of decimal places, an approximation in which a pattern is established that continues for an unlimited number of decimal places or an exact value with only finitely many decimal places. In this last case, the last non-zero digit may be replaced by the digit one smaller followed by an unlimited number of 9's, or the last non-zero digit may be followed by an unlimited number of zeros. Thus the exact real number 3.74 can also be written 3.7399999999... and 3.74000000000.... Similarly, a decimal numeral with an unlimited number of 0's can be rewritten by dropping the 0's to the right of the rightmost nonzero digit, and a decimal numeral with an unlimited number of 9's can be rewritten by increasing by one the rightmost digit less than 9, and changing all the 9's to the right of that digit to 0's. Finally, an unlimited sequence of 0's to the right of a decimal place can be dropped. For example, 6.849999999999... = 6.85 and 6.850000000000... = 6.85. Finally, if all of the digits in a numeral are 0, the number is 0, and if all of the digits in a numeral are an unending string of 9's, you can drop the nines to the right of the decimal place, and add one to the string of 9s to the left of the decimal place. For example, 99.999... = 100. The real numbers also have an important but highly technical property called the least upper bound property. It can be shown that any ordered field, which is also completeness of the real numbers, complete, is isomorphic to the real numbers. The real numbers are not, however, an algebraically closed field, because they do not include a solution (often called a square root of minus one) to the algebraic equation x^2+1=0.


Complex numbers

Moving to a greater level of abstraction, the real numbers can be extended to the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s. This set of numbers arose historically from trying to find closed formulas for the roots of cubic function, cubic and quadratic function, quadratic polynomials. This led to expressions involving the square roots of negative numbers, and eventually to the definition of a new number: a square root of −1, denoted by ''imaginary unit, i'', a symbol assigned by Leonhard Euler, and called the imaginary unit. The complex numbers consist of all numbers of the form :\,a + b i where ''a'' and ''b'' are real numbers. Because of this, complex numbers correspond to points on the complex plane, a vector space of two real dimensions. In the expression , the real number ''a'' is called the real part and ''b'' is called the imaginary part. If the real part of a complex number is 0, then the number is called an imaginary number or is referred to as ''purely imaginary''; if the imaginary part is 0, then the number is a real number. Thus the real numbers are a subset of the complex numbers. If the real and imaginary parts of a complex number are both integers, then the number is called a Gaussian integer. The symbol for the complex numbers is C or \mathbb. The fundamental theorem of algebra asserts that the complex numbers form an algebraically closed field, meaning that every polynomial with complex coefficients has a zero of a function, root in the complex numbers. Like the reals, the complex numbers form a field (mathematics), field, which is complete space, complete, but unlike the real numbers, it is not total order, ordered. That is, there is no consistent meaning assignable to saying that ''i'' is greater than 1, nor is there any meaning in saying that ''i'' is less than 1. In technical terms, the complex numbers lack a total order that is ordered field, compatible with field operations.


Subclasses of the integers


Even and odd numbers

An even number is an integer that is "evenly divisible" by two, that is Euclidean division, divisible by two without remainder; an odd number is an integer that is not even. (The old-fashioned term "evenly divisible" is now almost always shortened to "divisibility, divisible".) Any odd number ''n'' may be constructed by the formula for a suitable integer ''k''. Starting with the first non-negative odd numbers are . Any even number ''m'' has the form where ''k'' is again an integer. Similarly, the first non-negative even numbers are .


Prime numbers

A prime number, often shortened to just prime, is an integer greater than 1 that is not the product of two smaller positive integers. The first few prime numbers are 2, 3, 5, 7, and 11. There is no such simple formula as for odd and even numbers to generate the prime numbers. The primes have been widely studied for more than 2000 years and have led to many questions, only some of which have been answered. The study of these questions belongs to
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
. Goldbach's conjecture is an example of a still unanswered question: "Is every even number the sum of two primes?" One answered question, as to whether every integer greater than one is a product of primes in only one way, except for a rearrangement of the primes, was confirmed; this proven claim is called the fundamental theorem of arithmetic. A proof appears in Euclid's Elements.


Other classes of integers

Many subsets of the natural numbers have been the subject of specific studies and have been named, often after the first mathematician that has studied them. Example of such sets of integers are Fibonacci numbers and perfect numbers. For more examples, see Integer sequence.


Subclasses of the complex numbers


Algebraic, irrational and transcendental numbers

Algebraic numbers are those that are a solution to a polynomial equation with integer coefficients. Real numbers that are not rational numbers are called irrational numbers. Complex numbers which are not algebraic are called transcendental numbers. The algebraic numbers that are solutions of a monic polynomial equation with integer coefficients are called algebraic integers.


Constructible numbers

Motivated by the classical problems of Straightedge and compass construction, constructions with straightedge and compass, the constructible numbers are those complex numbers whose real and imaginary parts can be constructed using straightedge and compass, starting from a given segment of unit length, in a finite number of steps.


Computable numbers

A computable number, also known as ''recursive number'', is a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
such that there exists an algorithm which, given a positive number ''n'' as input, produces the first ''n'' digits of the computable number's decimal representation. Equivalent definitions can be given using μ-recursive functions, Turing machines or λ-calculus. The computable numbers are stable for all usual arithmetic operations, including the computation of the roots of a polynomial, and thus form a real closed field that contains the real algebraic numbers. The computable numbers may be viewed as the real numbers that may be exactly represented in a computer: a computable number is exactly represented by its first digits and a program for computing further digits. However, the computable numbers are rarely used in practice. One reason is that there is no algorithm for testing the equality of two computable numbers. More precisely, there cannot exist any algorithm which takes any computable number as an input, and decides in every case if this number is equal to zero or not. The set of computable numbers has the same cardinality as the natural numbers. Therefore, almost all real numbers are non-computable. However, it is very difficult to produce explicitly a real number that is not computable.


Extensions of the concept


''p''-adic numbers

The ''p''-adic numbers may have infinitely long expansions to the left of the decimal point, in the same way that real numbers may have infinitely long expansions to the right. The number system that results depends on what radix, base is used for the digits: any base is possible, but a prime number base provides the best mathematical properties. The set of the ''p''-adic numbers contains the rational numbers, but is not contained in the complex numbers. The elements of an algebraic function field over a finite field and algebraic numbers have many similar properties (see Function field analogy). Therefore, they are often regarded as numbers by number theorists. The ''p''-adic numbers play an important role in this analogy.


Hypercomplex numbers

Some number systems that are not included in the complex numbers may be constructed from the real numbers in a way that generalize the construction of the complex numbers. They are sometimes called
hypercomplex number In mathematics, hypercomplex number is a traditional term for an element of a finite-dimensional unital algebra over the field of real numbers. The study of hypercomplex numbers in the late 19th century forms the basis of modern group represen ...
s. They include the quaternions H, introduced by Sir William Rowan Hamilton, in which multiplication is not commutative, the octonions, in which multiplication is not associative in addition to not being commutative, and the sedenions, in which multiplication is not Alternative algebra, alternative, neither associative nor commutative.


Transfinite numbers

For dealing with infinite set (mathematics), sets, the natural numbers have been generalized to the ordinal numbers and to the cardinal numbers. The former gives the ordering of the set, while the latter gives its size. For finite sets, both ordinal and cardinal numbers are identified with the natural numbers. In the infinite case, many ordinal numbers correspond to the same cardinal number.


Nonstandard numbers

Hyperreal numbers are used in non-standard analysis. The hyperreals, or nonstandard reals (usually denoted as *R), denote an ordered field that is a proper Field extension, extension of the ordered field of
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s R and satisfies the transfer principle. This principle allows true first-order logic, first-order statements about R to be reinterpreted as true first-order statements about *R. Superreal number, Superreal and surreal numbers extend the real numbers by adding infinitesimally small numbers and infinitely large numbers, but still form
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
.


See also

* Concrete number * List of numbers * List of types of numbers * * Complex numbers * Numerical cognition * Orders of magnitude * * * * * * Subitizing and counting


Notes


References

* Tobias Dantzig, ''Number, the language of science; a critical survey written for the cultured non-mathematician'', New York, The Macmillan Company, 1930. * Erich Friedman,
What's special about this number?
'' * Steven Galovich, ''Introduction to Mathematical Structures'', Harcourt Brace Javanovich, 1989, . * Paul Halmos, ''Naive Set Theory'', Springer, 1974, . * Morris Kline, ''Mathematical Thought from Ancient to Modern Times'', Oxford University Press, 1990. * Alfred North Whitehead and Bertrand Russell, ''Principia Mathematica'' to *56, Cambridge University Press, 1910. * Leo Cory, ''A Brief History of Numbers'', Oxford University Press, 2015, .


External links

* * * * *;
Online Encyclopedia of Integer Sequences
{{Authority control Group theory Numbers, Mathematical objects