Magneto wall telephone 1917 open.jpg
   HOME

TheInfoList



OR:

A magneto is an electrical generator that uses
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
s to produce periodic pulses of alternating current. Unlike a dynamo, a magneto does not contain a
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, a ...
to produce direct current. It is categorized as a form of alternator, although it is usually considered distinct from most other alternators, which use field coils rather than permanent magnets. Hand-cranked magneto generators were used to provide ringing current in telephone systems. Magnetos were also adapted to produce pulses of high voltage in the ignition systems of some gasoline-powered internal combustion engines to provide power to the
spark plug A spark plug (sometimes, in British English, a sparking plug, and, colloquially, a plug) is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air ...
s. Use of such
ignition magneto An ignition magneto, or high-tension magneto, is a magneto that provides current for the ignition system of a spark-ignition engine, such as a petrol engine. It produces pulses of high voltage for the spark plugs. The older term ''tension'' ...
s for ignition is now limited mainly to engines without a low-voltage electrical system, such as lawnmowers and chainsaws, and to
aircraft engine An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Most aircraft engines are either piston engines or gas turbines, although a few have been rocket powered and in recent years many ...
s, in which keeping the ignition independent of the rest of the electrical system ensures that the engine continues running in the event of alternator or battery failure. For redundancy, virtually all piston engine aircraft are fitted with two magneto systems, each supplying power to one of two spark plugs in each cylinder. Magnetos were used for specialized isolated power systems such as
arc lamp An arc lamp or arc light is a lamp that produces light by an electric arc (also called a voltaic arc). The carbon arc light, which consists of an arc between carbon electrodes in air, invented by Humphry Davy in the first decade of the 1800s, ...
systems or
lighthouse A lighthouse is a tower, building, or other type of physical structure designed to emit light from a system of lamps and lenses and to serve as a beacon for navigational aid, for maritime pilots at sea or on inland waterways. Lighthouses mar ...
s, for which their simplicity was an advantage. They have never been widely applied for the purposes of bulk electricity generation, for the same purposes or to the same extent as either dynamos or alternators. Only in a few specialised cases have they been used for power generation.


History

Production of electric current from a moving
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
was demonstrated by Faraday in 1831. The first machines to produce electric current from magnetism used permanent magnets; the dynamo machine, which used an electromagnet to produce the magnetic field, was developed later. The machine built by Hippolyte Pixii in 1832 used a rotating permanent magnet to induce alternating voltage in two fixed coils.


Electroplating

The first electrical machine used for an industrial process was a magneto, the Woolrich Electrical Generator. In 1842 John Stephen Woolrich was granted UK patent 9431 for the use of an electrical generator in
electroplating Electroplating, also known as electrochemical deposition or electrodeposition, is a process for producing a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be ...
, rather than batteries. A machine was built in 1844 and licensed to the use of the Elkington Works in Birmingham. Such electroplating expanded to become an important aspect of the Birmingham toy industry, the manufacture of buttons, buckles and similar small metal items. The surviving machine has an applied field from four horseshoe magnets with axial fields. The rotor has ten axial bobbins. Electroplating requires DC and so the usual AC magneto is unworkable. Woolrich's machine, unusually, has a
commutator In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, a ...
to rectify its output to DC.


Arc lighting

Most early dynamos were bipolarSee the related
bipolar motor A bipolar electric motor is an electric motor with only two (hence ''bi-'') poles to its stationary field. They are an example of the simple brushed DC motor, with a commutator. This field may be generated by either a permanent magnet or a field ...
for a discussion of their development from bipolar to multipolar fields.
and so their output varied cyclically as the armature rotated past the two poles. To achieve an adequate output power, magneto generators used many more poles; usually sixteen, from eight horseshoe magnets arranged in a ring. As the
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
available was limited by the magnet metallurgy, the only option was to increase the field by using more magnets. As this was still an inadequate power, extra rotor disks were stacked axially, along the axle. This had the advantage that each rotor disk could at least share the flux of two expensive magnets. The machine illustrated here uses eight disks and nine rows of magnets: 72 magnets in all. The rotors first used were wound as sixteen axial bobbins, one per pole. Compared to the bipolar dynamo, this did have the advantage of more poles giving a smoother output per rotation,Actually a higher AC frequency. which was an advantage when driving arc lamps. Magnetos thus established a small niche for themselves as lighting generators. The Belgian electrical engineer
Floris Nollet Floris Nollet (16 September 1794 – 11 January 1853) was a Belgian physicist, engineer, inventor. Nollet was a grandnephew of Jean-Antoine Nollet. He became professor of physics at the École Militaire in Brussels. He also founded the British-Fr ...
(1794–1853) became particularly known for this type of arc lighting generator and founded the British-French company
Société de l'Alliance Lactalis is a French multinational dairy products corporation, owned by the Besnier family and based in Laval, Mayenne, France. The company's former name was Besnier SA. Lactalis is the largest dairy products group in the world, and is the se ...
to manufacture them. The French engineer
Auguste de Méritens Baron Auguste de Méritens was a French electrical engineer of the 19th century. He was born in 1834. He is best known his work on magneto generators, particularly those used for arc lighting and lighthouses. Similar magneto generators had been ...
(1834–1898) developed magnetos further for this purpose. His innovation was to replace the rotor coils previously wound on individual bobbins, with a 'ring wound' armature. These windings were placed on a segmented iron core, similar to a
Gramme ring A Gramme machine, Gramme ring, Gramme magneto, or Gramme dynamo is an electrical generator that produces direct current, named for its Belgian inventor, Zénobe Gramme, and was built as either a dynamo or a magneto. It was the first generator to p ...
, so as to form a single continuous hoop. This gave a more even output current, which was still more advantageous for arc lamps.


Lighthouses

De Méritens is best remembered today for his production of magneto generators specifically for lighthouses. These were favoured for their simplicity and reliability, in particular their avoidance of commutators. In the sea air of a lighthouse, the commutator that had been used previously with dynamo generators was a continual source of trouble. The lighthouse keepers of the time, usually semi-retired sailors, were not mechanically or electrically skilled enough to maintain these more complex machines. The de Méritens magneto generator illustrated shows the 'ring wound' armature. As there is now only a single rotor disk, each horseshoe magnet comprises a stack of individual magnets, but acts through a pair of pole pieces.


Self-exciting dynamos

Both dynamos and alternators required a source of power to drive their field coils. This could not be supplied by their own generator's output, without some process of ' bootstrapping'. Henry Wilde, an electrical engineer from Manchester, England, developed a combination of magneto and electro-magnet generator, where the magneto was used only to supply the field to the larger alternator. These are illustrated in
Rankin Kennedy Rankin may refer to: Places Australia *Division of Rankin, an electoral district in the Australian Federal House of Representatives, in Queensland Canada *Rankin Inlet, Nunavut *Rankin Inlet Airport, Nunavut * Rankin River, Ontario * Rankin Locat ...
's work ''Electrical Installations'' Kennedy, Electrical Installations, Vol. III, 1903, p. 207 Kennedy himself developed a simpler version of this, intended for lighting use on ships, where a dynamo and magneto were assembled on the same shaft. Kennedy, Electrical Installations, Vol. III, 1903, p. 208 Kennedy's innovation here was to avoid the need for brushgear, altogether. The current generated in the magneto is transmitted by wires attached to the rotating shaft to the dynamo's rotating field coil. The output of the dynamo is then taken from the stator coils. This is 'inside-out' compared to the conventional dynamo, but avoids the need for brushgear. The invention of the self-exciting field by Varley,
Siemens Siemens AG ( ) is a German multinational conglomerate corporation and the largest industrial manufacturing company in Europe headquartered in Munich with branch offices abroad. The principal divisions of the corporation are ''Industry'', '' ...
& Wheatstone removed the need for a magneto exciter. A small residual field in the iron armature of the field coils acted as a weak permanent magnet, and thus a magneto. The shunt wiring of the generator feeds some of its output current back into the field coils, which in turn increases output. By this means, the field 'builds up' regeneratively, though this may take 20–30 seconds to do so fully. Use of magnetos here is now obsolete, though separate exciters are still used for high power generating sets, as they permit easier control of output power. These are particularly common with the transmissions of diesel-electric locomotives.


Power generation

Magnetos have advantages of simplicity and reliability, but are limited in size owing to the
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
available from their permanent magnets. The fixed excitation of a magneto made it difficult to control its terminal voltage or reactive power production when operating on a synchronized grid. This restricted their use for high-power applications. Power generation magnetos were limited to narrow fields, such as powering arc lamps or lighthouses, where their particular features of output stability or simple reliability were most valued.


Wind turbines

Small wind turbine Small wind turbines, also known as micro wind turbines, are used for microgeneration of electricity, as opposed to large commercial wind turbines, such as those found in wind farms. Small wind turbines often have passive yaw systems as opposed ...
s, particularly self-build designs, are widely adopting magneto alternators for generation. The generators use rotating neodymium
rare-earth magnet Rare-earth magnets are strong permanent magnets made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than ...
s with a
three-phase Three-phase electric power (abbreviated 3φ) is a common type of alternating current used in electricity generation, Electric power transmission, transmission, and Electric power distribution, distribution. It is a type of polyphase system empl ...
stator The stator is the stationary part of a rotary system, found in electric generators, electric motors, sirens, mud motors or biological rotors. Energy flows through a stator to or from the rotating component of the system. In an electric mot ...
and a bridge rectifier to produce direct current (DC). This current either directly pumps water, is stored in batteries, or drives a mains inverter that can supply the commercial electricity grid. A typical design is an axial-flux generator recycled from a car
brake disk A disc brake is a type of brake that uses the calipers to squeeze pairs of pads against a disc or a "rotor" to create friction. This action slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational speed or to hold ...
and hub bearing. A MacPherson strut provides the azimuth bearing to bring the turbine into the wind. The brake disk, with its attached rare-earth magnets, rotates to form the armature. A plywood disk carrying multiple axial coils is placed alongside this, with an iron armature ring behind it. In large sizes, from the 100 kW to MW range, the machines developed for modern wind turbines are termed permanent magnet synchronous generators.


Bicycles

One popular and common use of magnetos of today is for powering lights and USB powered devices on bicycles. Most commonly, a small magneto, termed a bottle dynamo, rubs against the tire of the bicycle and generates power as the wheel turns. More expensive and less common but more efficient is the hub dynamo that rotates neodymium magnets around a copper coil in a claw pole cage inside the hub of a wheel. Commonly referred to as ''dynamos'', both devices are in fact magnetos, producing alternating current as opposed to the direct current produced by a true dynamo.


Medical application

The magneto also had a medical application for treatment of mental illness in the beginnings of electromedicine. In 1850, Duchenne de Boulogne, a French doctor, developed and manufactured a magneto with a variable outer voltage and frequency, through varying revolutions by hand or varying the inductance of the two coils, for clinical experiments in neurology.


Ignition magnetos

Magnetos adapted to produce impulses of high voltage for spark plugs are used in the ignition systems of spark-ignition piston engines. Magnetos are used in piston aircraft engines for their reliability and simplicity, often in pairs. Motor sport vehicles such as motorcycles and snowmobiles may use magnetos because they are lighter in weight than an ignition system relying on a battery. Small internal combustion engines used for lawn mowers, chain saws, portable pumps and similar applications use magnetos for economy and weight reduction. Magnetos are not used in highway motor vehicles that have a cranking battery, which may need more ignition timing control than a magneto system can provide, though sophisticated solid state controllers are becoming more common.


Telephone

Manual telephones for local battery station service in magneto exchanges were equipped with a hand-cranked magneto generator to produce an alternating voltage to alert the central office operator, or to ring the bells of other telephones on the same (party) line.


Future possibilities

The development of modern
rare-earth magnet Rare-earth magnets are strong permanent magnets made from alloys of rare-earth elements. Developed in the 1970s and 1980s, rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than ...
s makes the simple magneto alternator a more practical proposition as a power generator, as these permit a greatly increased field strength. As the magnets are compact and of light weight, they generally form the rotor, so the output windings can be placed on the stator, avoiding the need for brushgear.


Guided missiles

By the late 1980s, developments in magnetic materials such as samarium–cobalt, an early rare-earth type, let permanent magnet alternators be used in applications that require an extremely robust generator. In
guided missile In military terminology, a missile is a guided airborne ranged weapon capable of self-propelled flight usually by a jet engine or rocket motor. Missiles are thus also called guided missiles or guided rockets (when a previously unguided rocket ...
s, such generators can replace a
flux switching alternator A flux switching alternator is a form of high-speed alternator, an AC electrical generator, intended for direct drive by a turbine. They are simple in design with the rotor containing no coils or magnets, making them rugged and capable of high rot ...
. These must operate at high speeds, directly coupled to a turbine. Both types share the advantage of the output coils being part of the stator, thus avoiding the need for brushgear.


See also

* Electromagnetism *
Faraday's law of induction Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...


Notes


References

{{reflist Electrical generators