Fermi paradox 3.ogg
   HOME

TheInfoList



OR:

Enrico Fermi (; 29 September 1901 – 28 November 1954) was an Italian (later naturalized American) physicist and the creator of the world's first
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
, the Chicago Pile-1. He has been called the "architect of the
nuclear age The Atomic Age, also known as the Atomic Era, is the period of history following the detonation of the first nuclear weapon, The Gadget at the ''Trinity'' test in New Mexico, on July 16, 1945, during World War II. Although nuclear chain reacti ...
" and the "architect of the atomic bomb". He was one of very few physicists to excel in both
theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
and experimental physics. Fermi was awarded the 1938
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
for his work on
induced radioactivity Induced radioactivity, also called artificial radioactivity or man-made radioactivity, is the process of using radiation to make a previously stable material radioactive. The husband and wife team of Irène Joliot-Curie and Frédéric Joliot-Curi ...
by neutron bombardment and for the discovery of
transuranium elements The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements ...
. With his colleagues, Fermi filed several patents related to the use of nuclear power, all of which were taken over by the US government. He made significant contributions to the development of statistical mechanics,
quantum theory Quantum theory may refer to: Science *Quantum mechanics, a major field of physics *Old quantum theory, predating modern quantum mechanics * Quantum field theory, an area of quantum mechanics that includes: ** Quantum electrodynamics ** Quantum ...
, and nuclear and
particle physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) an ...
. Fermi's first major contribution involved the field of statistical mechanics. After
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics ...
formulated his exclusion principle in 1925, Fermi followed with a paper in which he applied the principle to an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is a ...
, employing a statistical formulation now known as Fermi–Dirac statistics. Today, particles that obey the exclusion principle are called " fermions". Pauli later postulated the existence of an uncharged invisible particle emitted along with an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
during
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
, to satisfy the law of conservation of energy. Fermi took up this idea, developing a model that incorporated the postulated particle, which he named the "
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
". His theory, later referred to as
Fermi's interaction In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interactin ...
and now called
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, described one of the four
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electro ...
s in nature. Through experiments inducing radioactivity with the recently discovered
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
, Fermi discovered that
slow neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s were more easily captured by
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
than fast ones, and he developed the Fermi age equation to describe this. After bombarding
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
with slow neutrons, he concluded that he had created new elements. Although he was awarded the Nobel Prize for this discovery, the new elements were later revealed to be
nuclear fission product Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release ...
s. Fermi left Italy in 1938 to escape new Italian racial laws that affected his Jewish wife, Laura Capon. He emigrated to the United States, where he worked on the
Manhattan Project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
during World War II. Fermi led the team at the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private university, private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park, Chicago, Hyde Park neighborhood. The University of Chic ...
that designed and built Chicago Pile-1, which went
critical Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
on 2 December 1942, demonstrating the first human-created, self-sustaining nuclear chain reaction. He was on hand when the X-10 Graphite Reactor at Oak Ridge, Tennessee, went critical in 1943, and when the
B Reactor The B Reactor at the Hanford Site, near Richland, Washington, was the first large-scale nuclear reactor ever built. The project was a key part of the Manhattan Project, the United States nuclear weapons development program during World War II. I ...
at the
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. The site has been known by many names, including SiteW a ...
did so the next year. At Los Alamos, he headed F Division, part of which worked on
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care for ...
's
thermonuclear Thermonuclear fusion is the process of atomic nuclei combining or “fusing” using high temperatures to drive them close enough together for this to become possible. There are two forms of thermonuclear fusion: ''uncontrolled'', in which the re ...
" Super" bomb. He was present at the
Trinity test Trinity was the code name of the first detonation of a nuclear weapon. It was conducted by the United States Army at 5:29 a.m. on July 16, 1945, as part of the Manhattan Project. The test was conducted in the Jornada del Muerto desert abo ...
on 16 July 1945, where he used his Fermi method to estimate the bomb's yield. After the war, Fermi served under
J. Robert Oppenheimer J. Robert Oppenheimer (; April 22, 1904 – February 18, 1967) was an American theoretical physicist. A professor of physics at the University of California, Berkeley, Oppenheimer was the wartime head of the Los Alamos Laboratory and is oft ...
on the General Advisory Committee, which advised the Atomic Energy Commission on nuclear matters. After the detonation of the first Soviet
fission bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions (thermonuclear bomb), producing a nuclear explosion. Both bomb ...
in August 1949, he strongly opposed the development of a hydrogen bomb on both moral and technical grounds. He was among the scientists who testified on Oppenheimer's behalf at the 1954
hearing Hearing, or auditory perception, is the ability to perceive sounds through an organ, such as an ear, by detecting vibrations as periodic changes in the pressure of a surrounding medium. The academic field concerned with hearing is audit ...
that resulted in the denial of Oppenheimer's security clearance. Fermi did important work in particle physics, especially related to
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s and muons, and he speculated that
cosmic ray Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own ...
s arose when material was accelerated by magnetic fields in interstellar space. Many awards, concepts, and institutions are named after Fermi, including the
Enrico Fermi Award The Enrico Fermi Award is a scientific award conferred by the President of the United States. It is awarded to honor scientists of international stature for their lifetime achievement in the development, use, or production of energy. It was establ ...
, the
Enrico Fermi Institute __NOTOC__ The Institute for Nuclear Studies was founded September 1945 as part of the University of Chicago with Samuel King Allison as director. On November 20, 1955, it was renamed The Enrico Fermi Institute for Nuclear Studies. The name was s ...
, the Fermi National Accelerator Laboratory (Fermilab), the
Fermi Gamma-ray Space Telescope The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is ...
, and the synthetic element
fermium Fermium is a synthetic element with the symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic qua ...
, making him one of 16 scientists who have elements named after them. Fermi tutored or directly influenced no fewer than eight young researchers who went on to win Nobel Prizes.


Early life

Enrico Fermi was born in Rome, Italy, on 29 September 1901. He was the third child of Alberto Fermi, a division head in the Ministry of Railways, and Ida de Gattis, an elementary school teacher. His sister, Maria, was two years older, his brother Giulio a year older. After the two boys were sent to a rural community to be
wet nurse A wet nurse is a woman who breastfeeds and cares for another's child. Wet nurses are employed if the mother dies, or if she is unable or chooses not to nurse the child herself. Wet-nursed children may be known as "milk-siblings", and in some cu ...
d, Enrico rejoined his family in Rome when he was two and a half. Although he was baptized a
Roman Catholic Roman or Romans most often refers to: *Rome, the capital city of Italy * Ancient Rome, Roman civilization from 8th century BC to 5th century AD * Roman people, the people of ancient Rome *'' Epistle to the Romans'', shortened to ''Romans'', a let ...
in accordance with his grandparents' wishes, his family was not particularly religious; Enrico was an agnostic throughout his adult life. As a young boy, he shared the same interests as his brother Giulio, building
electric motor An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate for ...
s and playing with electrical and mechanical toys. Giulio died during an operation on a throat abscess in 1915 and Maria died in an airplane crash near
Milan Milan ( , , Lombard: ; it, Milano ) is a city in northern Italy, capital of Lombardy, and the second-most populous city proper in Italy after Rome. The city proper has a population of about 1.4 million, while its metropolitan city h ...
in 1959. At a local market in
Campo de' Fiori Campo de' Fiori (, literally "field of flowers") is a rectangular square south of Piazza Navona in Rome, Italy, at the border between rione Parione and rione Regola. It is diagonally southeast of the Palazzo della Cancelleria and one block nort ...
Fermi found a physics book, the 900-page ''Elementorum physicae mathematicae''. Written in Latin by Jesuit Father , a professor at the
Collegio Romano The Roman College ( la, Collegium Romanum, it, Collegio Romano) was a school established by St. Ignatius of Loyola in 1551, just 11 years after he founded the Society of Jesus (Jesuits). It quickly grew to include classes from elementary school t ...
, it presented mathematics,
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
,
astronomy Astronomy () is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, g ...
,
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultrav ...
, and acoustics as they were understood at the time of its 1840 publication. With a scientifically inclined friend, Enrico Persico, Fermi pursued projects such as building gyroscopes and measuring the acceleration of
Earth's gravity The gravity of Earth, denoted by , is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation). It is a vector quanti ...
. In 1914, Fermi, who used to often meet with his father in front of the office after work, met a colleague of his father called Adolfo Amidei, who would walk part of the way home with Alberto. Enrico had learned that Adolfo was interested in mathematics and physics and took the opportunity to ask Adolfo a question about geometry. Adolfo understood that the young Fermi was referring to
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
and then proceeded to give him a book on the subject written by
Theodor Reye Karl Theodor Reye (born 20 June 1838 in Ritzebüttel, Germany and died 2 July 1919 in Würzburg, Germany) was a German mathematician. He contributed to geometry, particularly projective geometry and synthetic geometry. He is best known for his ...
. Two months later, Fermi returned the book, having solved all the problems proposed at the end of the book, some of which Adolfo considered difficult. Upon verifying this, Adolfo felt that Fermi was "a prodigy, at least with respect to geometry", and further mentored the boy, providing him with more books on physics and mathematics. Adolfo noted that Fermi had a very good memory and thus could return the books after having read them because he could remember their content very well.


''Scuola Normale Superiore'' in Pisa

Fermi graduated from high school in July 1918, having skipped the third year entirely. At Amidei's urging, Fermi learned
German German(s) may refer to: * Germany (of or related to) ** Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ge ...
to be able to read the many scientific papers that were published in that language at the time, and he applied to the '' Scuola Normale Superiore'' in Pisa. Amidei felt that the Scuola would provide better conditions for Fermi's development than the
Sapienza University of Rome The Sapienza University of Rome ( it, Sapienza – Università di Roma), also called simply Sapienza or the University of Rome, and formally the Università degli Studi di Roma "La Sapienza", is a public research university located in Rome, Ita ...
could at the time. Having lost one son, Fermi's parents only reluctantly allowed him to live in the school's lodgings away from Rome for four years. Fermi took first place in the difficult entrance exam, which included an essay on the theme of "Specific characteristics of Sounds"; the 17-year-old Fermi chose to use Fourier analysis to derive and solve the partial differential equation for a vibrating rod, and after interviewing Fermi the examiner declared he would become an outstanding physicist. At the ''Scuola Normale Superiore'', Fermi played pranks with fellow student Franco Rasetti; the two became close friends and collaborators. Fermi was advised by Luigi Puccianti, director of the physics laboratory, who said there was little he could teach Fermi and often asked Fermi to teach him something instead. Fermi's knowledge of quantum physics was such that Puccianti asked him to organize seminars on the topic. During this time Fermi learned
tensor calculus In mathematics, tensor calculus, tensor analysis, or Ricci calculus is an extension of vector calculus to tensor fields (tensors that may vary over a manifold, e.g. in spacetime). Developed by Gregorio Ricci-Curbastro and his student Tullio Levi ...
, a technique key to
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
. Fermi initially chose mathematics as his major, but soon switched to physics. He remained largely self-taught, studying general relativity,
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, and atomic physics. In September 1920, Fermi was admitted to the Physics department. Since there were only three students in the department—Fermi, Rasetti, and Nello Carrara—Puccianti let them freely use the laboratory for whatever purposes they chose. Fermi decided that they should research
X-ray crystallography X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
, and the three worked to produce a Laue photograph—an X-ray photograph of a crystal. During 1921, his third year at the university, Fermi published his first scientific works in the Italian journal '' Nuovo Cimento''. The first was entitled "On the dynamics of a rigid system of electrical charges in translational motion" ('). A sign of things to come was that the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
was expressed as a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensor ...
—a mathematical construct commonly used to describe something moving and changing in three-dimensional space. In classical mechanics, mass is a scalar quantity, but in relativity, it changes with velocity. The second paper was "On the electrostatics of a uniform gravitational field of electromagnetic charges and on the weight of electromagnetic charges" ('). Using general relativity, Fermi showed that a charge has a weight equal to U/c2, where U was the electrostatic energy of the system, and c is the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. The first paper seemed to point out a contradiction between the electrodynamic theory and the relativistic one concerning the calculation of the electromagnetic masses, as the former predicted a value of 4/3 U/c2. Fermi addressed this the next year in a paper "Concerning a contradiction between
electrodynamic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
and the relativistic theory of electromagnetic mass" in which he showed that the apparent contradiction was a consequence of relativity. This paper was sufficiently well-regarded that it was translated into German and published in the German scientific journal ''
Physikalische Zeitschrift ''Physikalische Zeitschrift'' (English: ''Physical Journal'') was a German scientific journal of physics published from 1899 to 1945 by S. Hirzel Verlag. In 1924, it merged with ''Jahrbuch der Radioaktivität und Elektronik''. From 1944 onwards, ...
'' in 1922. That year, Fermi submitted his article "On the phenomena occurring near a
world line The world line (or worldline) of an object is the path that an object traces in 4-dimensional spacetime. It is an important concept in modern physics, and particularly theoretical physics. The concept of a "world line" is distinguished from c ...
" (') to the Italian journal '. In this article he examined the Principle of Equivalence, and introduced the so-called " Fermi coordinates". He proved that on a world line close to the timeline, space behaves as if it were a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
. Fermi submitted his thesis, "A theorem on probability and some of its applications" ('), to the ''Scuola Normale Superiore'' in July 1922, and received his
laurea In Italy, the ''laurea'' is the main post-secondary academic degree. The name originally referred literally to the laurel wreath, since ancient times a sign of honor and now worn by Italian students right after their official graduation ceremony ...
at the unusually young age of 20. The thesis was on X-ray diffraction images.
Theoretical physics Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experim ...
was not yet considered a discipline in Italy, and the only thesis that would have been accepted was experimental physics. For this reason, Italian physicists were slow in embracing the new ideas like relativity coming from Germany. Since Fermi was quite at home in the lab doing experimental work, this did not pose insurmountable problems for him. While writing the appendix for the Italian edition of the book ''Fundamentals of Einstein Relativity'' by
August Kopff August Kopff (February 5, 1882 – April 25, 1960) was a German astronomer and discoverer of several comets and asteroids. Kopff studied and worked in Heidelberg, getting his PhD there in 1906 and he then joined the Humboldt University of Berli ...
in 1923, Fermi was the first to point out that hidden inside the Einstein equation () was an enormous amount of
nuclear potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
to be exploited. "It does not seem possible, at least in the near future", he wrote, "to find a way to release these dreadful amounts of energy—which is all to the good because the first effect of an explosion of such a dreadful amount of energy would be to smash into smithereens the physicist who had the misfortune to find a way to do it." In 1924, Fermi was initiated into the
Masonic Lodge A Masonic lodge, often termed a private lodge or constituent lodge, is the basic organisational unit of Freemasonry. It is also commonly used as a term for a building in which such a unit meets. Every new lodge must be warranted or chartered ...
"Adriano Lemmi" of the Grand Orient of Italy. In 1923–1924, Fermi spent a semester studying under Max Born at the
University of Göttingen The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded ...
, where he met
Werner Heisenberg Werner Karl Heisenberg () (5 December 1901 – 1 February 1976) was a German theoretical physicist and one of the main pioneers of the theory of quantum mechanics. He published his work in 1925 in a breakthrough paper. In the subsequent serie ...
and
Pascual Jordan Ernst Pascual Jordan (; 18 October 1902 – 31 July 1980) was a German theoretical and mathematical physicist who made significant contributions to quantum mechanics and quantum field theory. He contributed much to the mathematical form of matri ...
. Fermi then studied in
Leiden Leiden (; in English and archaic Dutch also Leyden) is a city and municipality in the province of South Holland, Netherlands. The municipality of Leiden has a population of 119,713, but the city forms one densely connected agglomeration wi ...
with
Paul Ehrenfest Paul Ehrenfest (18 January 1880 – 25 September 1933) was an Austrian theoretical physicist, who made major contributions to the field of statistical mechanics and its relations with quantum mechanics, including the theory of phase transition a ...
from September to December 1924 on a fellowship from the Rockefeller Foundation obtained through the intercession of the mathematician
Vito Volterra Vito Volterra (, ; 3 May 1860 – 11 October 1940) was an Italian mathematician and physicist, known for his contributions to mathematical biology and integral equations, being one of the founders of functional analysis. Biography Born in An ...
. Here Fermi met Hendrik Lorentz and
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
, and became friends with
Samuel Goudsmit Samuel Abraham Goudsmit (July 11, 1902 – December 4, 1978) was a Dutch-American physicist famous for jointly proposing the concept of electron spin with George Eugene Uhlenbeck in 1925. Life and career Goudsmit was born in The Hague, Nethe ...
and
Jan Tinbergen Jan Tinbergen (; ; 12 April 19039 June 1994) was a Dutch economist who was awarded the first Nobel Memorial Prize in Economic Sciences in 1969, which he shared with Ragnar Frisch for having developed and applied dynamic models for the analysis o ...
. From January 1925 to late 1926, Fermi taught
mathematical physics Mathematical physics refers to the development of mathematical methods for application to problems in physics. The '' Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the developme ...
and
theoretical mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects re ...
at the
University of Florence The University of Florence (Italian: ''Università degli Studi di Firenze'', UniFI) is an Italian public research university located in Florence, Italy. It comprises 12 schools and has around 50,000 students enrolled. History The first universi ...
, where he teamed up with Rasetti to conduct a series of experiments on the effects of magnetic fields on mercury vapor. He also participated in seminars at the Sapienza University of Rome, giving lectures on quantum mechanics and solid state physics. While giving lectures on the new quantum mechanics based on the remarkable accuracy of predictions of the Schrödinger equation, Fermi would often say, "It has no business to fit so well!" After
Wolfgang Pauli Wolfgang Ernst Pauli (; ; 25 April 1900 – 15 December 1958) was an Austrian theoretical physicist and one of the pioneers of quantum physics. In 1945, after having been nominated by Albert Einstein, Pauli received the Nobel Prize in Physics ...
announced his exclusion principle in 1925, Fermi responded with a paper "On the quantization of the perfect monoatomic gas" ('), in which he applied the exclusion principle to an ideal gas. The paper was especially notable for Fermi's statistical formulation, which describes the distribution of particles in systems of many
identical particles In quantum mechanics, identical particles (also called indistinguishable or indiscernible particles) are particles that cannot be distinguished from one another, even in principle. Species of identical particles include, but are not limited to, ...
that obey the exclusion principle. This was independently developed soon after by the British physicist
Paul Dirac Paul Adrien Maurice Dirac (; 8 August 1902 – 20 October 1984) was an English theoretical physicist who is regarded as one of the most significant physicists of the 20th century. He was the Lucasian Professor of Mathematics at the Univer ...
, who also showed how it was related to the
Bose–Einstein statistics In quantum statistics, Bose–Einstein statistics (B–E statistics) describes one of two possible ways in which a collection of non-interacting, indistinguishable particles may occupy a set of available discrete energy states at thermodynamic ...
. Accordingly, it is now known as Fermi–Dirac statistics. After Dirac, particles that obey the exclusion principle are today called " fermions", while those that do not are called "
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
s".


Professor in Rome

Professorships in Italy were granted by competition (') for a vacant chair, the applicants being rated on their publications by a committee of professors. Fermi applied for a chair of mathematical physics at the
University of Cagliari The University of Cagliari ( it, Università degli Studi di Cagliari) is a university in Cagliari, Sardinia, Italy. It was founded in 1606 and is organized in 11 faculties. History The ''Studium Generalis Kalaritanum'' was founded in 1606 alon ...
on
Sardinia Sardinia ( ; it, Sardegna, label=Italian, Corsican and Tabarchino ; sc, Sardigna , sdc, Sardhigna; french: Sardaigne; sdn, Saldigna; ca, Sardenya, label=Algherese and Catalan) is the second-largest island in the Mediterranean Sea, after ...
, but was narrowly passed over in favor of
Giovanni Giorgi Giovanni Giorgi (November 27, 1871 – August 19, 1950) was an Italian physicist and electrical engineer who proposed the ''Giorgi system'' of measurement, the precursor to the International System of Units (SI). Early Life Giovanni Giorgi was ...
. In 1926, at the age of 24, he applied for a professorship at the Sapienza University of Rome. This was a new chair, one of the first three in theoretical physics in Italy, that had been created by the Minister of Education at the urging of Professor
Orso Mario Corbino Orso Mario Corbino (30 April 1876, Augusta – 23 January 1937, Rome) was an Italian physicist and politician. His younger brother was Epicarmo Corbino. He served as the minister for education in 1921 and as the minister for economy in 1921. H ...
, who was the university's professor of experimental physics, the Director of the Institute of Physics, and a member of Benito Mussolini's cabinet. Corbino, who also chaired the selection committee, hoped that the new chair would raise the standard and reputation of physics in Italy. The committee chose Fermi ahead of Enrico Persico and Aldo Pontremoli, and Corbino helped Fermi recruit his team, which was soon joined by notable students such as
Edoardo Amaldi Edoardo Amaldi (5 September 1908 – 5 December 1989) was an Italian physicist. He coined the term "neutrino" in conversations with Enrico Fermi distinguishing it from the heavier "neutron". He has been described as "one of the leading nuclear ...
,
Bruno Pontecorvo Bruno Pontecorvo (; russian: Бру́но Макси́мович Понтеко́рво, ''Bruno Maksimovich Pontecorvo''; 22 August 1913 – 24 September 1993) was an Italian and Soviet nuclear physicist, an early assistant of Enrico Fermi and ...
,
Ettore Majorana Ettore Majorana (,, uploaded 19 April 2013, retrieved 14 December 2019 ; born on 5 August 1906 – possibly dying after 1959) was an Italian theoretical physicist who worked on neutrino masses. On 25 March 1938, he disappeared under mysteri ...
and
Emilio Segrè Emilio Gino Segrè (1 February 1905 – 22 April 1989) was an Italian-American physicist and Nobel laureate, who discovered the elements technetium and astatine, and the antiproton, a subatomic antiparticle, for which he was awarded the Nobe ...
, and by Franco Rasetti, whom Fermi had appointed as his assistant. They soon nicknamed the "
Via Panisperna boys Via Panisperna boys (Italian: ''I ragazzi di Via Panisperna'') is the name given to a group of young Italian scientists led by Enrico Fermi, who worked at the Royal Physics Institute of the University of Rome La Sapienza. In 1934 they made the ...
" after the street where the Institute of Physics was located. Fermi married Laura Capon, a science student at the university, on 19 July 1928. They had two children: Nella, born in January 1931, and Giulio, born in February 1936. On 18 March 1929, Fermi was appointed a member of the
Royal Academy of Italy The Royal Academy of Italy ( it, Reale Accademia d'Italia, italic=no) was a short-lived Italian academy of the Fascist period. It was created on 7 January 1926 by royal decree,See reference . but was not inaugurated until 28 October 1929. It was e ...
by Mussolini, and on 27 April he joined the Fascist Party. He later opposed Fascism when the 1938 racial laws were promulgated by Mussolini in order to bring Italian Fascism ideologically closer to German
Nazism Nazism ( ; german: Nazismus), the common name in English for National Socialism (german: Nationalsozialismus, ), is the far-right totalitarian political ideology and practices associated with Adolf Hitler and the Nazi Party (NSDAP) i ...
. These laws threatened Laura, who was Jewish, and put many of Fermi's research assistants out of work. During their time in Rome, Fermi and his group made important contributions to many practical and theoretical aspects of physics. In 1928, he published his ''Introduction to Atomic Physics'' ('), which provided Italian university students with an up-to-date and accessible text. Fermi also conducted public lectures and wrote popular articles for scientists and teachers in order to spread knowledge of the new physics as widely as possible. Part of his teaching method was to gather his colleagues and graduate students together at the end of the day and go over a problem, often from his own research. A sign of success was that foreign students now began to come to Italy. The most notable of these was the German physicist
Hans Bethe Hans Albrecht Bethe (; July 2, 1906 – March 6, 2005) was a German-American theoretical physicist who made major contributions to nuclear physics, astrophysics, quantum electrodynamics, and solid-state physics, and who won the 1967 Nobel ...
, who came to Rome as a Rockefeller Foundation fellow, and collaborated with Fermi on a 1932 paper "On the Interaction between Two Electrons" (). At this time, physicists were puzzled by
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
, in which an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
was emitted from the
atomic nucleus The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
. To satisfy the law of conservation of energy, Pauli postulated the existence of an invisible particle with no charge and little or no mass that was also emitted at the same time. Fermi took up this idea, which he developed in a tentative paper in 1933, and then a longer paper the next year that incorporated the postulated particle, which Fermi called a "
neutrino A neutrino ( ; denoted by the Greek letter ) is a fermion (an elementary particle with spin of ) that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass ...
". His theory, later referred to as
Fermi's interaction In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interactin ...
, and still later as the theory of the
weak interaction In nuclear physics and particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is one of the four known fundamental interactions, with the others being electromagnetism, the strong interaction ...
, described one of the four fundamental forces of nature. The neutrino was detected after his death, and his interaction theory showed why it was so difficult to detect. When he submitted his paper to the British journal ''
Nature Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans are ...
'', that journal's editor turned it down because it contained speculations which were "too remote from physical reality to be of interest to readers". Thus Fermi saw the theory published in Italian and German before it was published in English. In the introduction to the 1968 English translation, physicist Fred L. Wilson noted that: In January 1934,
Irène Joliot-Curie Irène Joliot-Curie (; ; 12 September 1897 – 17 March 1956) was a French chemist, physicist and politician, the elder daughter of Pierre and Marie Curie, and the wife of Frédéric Joliot-Curie. Jointly with her husband, Joliot-Curie was awar ...
and Frédéric Joliot announced that they had bombarded elements with
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be pr ...
s and induced radioactivity in them. By March, Fermi's assistant
Gian-Carlo Wick Gian Carlo Wick (15 October 1909 – 20 April 1992) was an Italian theoretical physicist who made important contributions to quantum field theory. The Wick rotation, Wick contraction, Wick's theorem, and the Wick product are named after him.
had provided a theoretical explanation using Fermi's theory of beta decay. Fermi decided to switch to experimental physics, using the
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
, which
James Chadwick Sir James Chadwick, (20 October 1891 – 24 July 1974) was an English physicist who was awarded the 1935 Nobel Prize in Physics for his discovery of the neutron in 1932. In 1941, he wrote the final draft of the MAUD Report, which inspi ...
had discovered in 1932. In March 1934, Fermi wanted to see if he could induce radioactivity with Rasetti's
polonium Polonium is a chemical element with the symbol Po and atomic number 84. Polonium is a chalcogen. A rare and highly radioactive metal with no stable isotopes, polonium is chemically similar to selenium and tellurium, though its metallic character ...
-
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form m ...
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
. Neutrons had no electric charge, and so would not be deflected by the positively charged nucleus. This meant that they needed much less energy to penetrate the nucleus than charged particles, and so would not require a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
, which the Via Panisperna boys did not have. Fermi had the idea to resort to replacing the polonium-beryllium neutron source with a
radon Radon is a chemical element with the symbol Rn and atomic number 86. It is a radioactive, colourless, odourless, tasteless noble gas. It occurs naturally in minute quantities as an intermediate step in the normal radioactive decay chains through ...
-beryllium one, which he created by filling a glass bulb with beryllium powder, evacuating the air, and then adding 50 m Ci of radon gas, supplied by Giulio Cesare Trabacchi. This created a much stronger neutron source, the effectiveness of which declined with the 3.8-day
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of radon. He knew that this source would also emit
gamma ray A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
s, but, on the basis of his theory, he believed that this would not affect the results of the experiment. He started by bombarding
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
, an element with a high
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
that was readily available, without success. He turned to
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
, which emitted an alpha particle and produced
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
, which then decayed into
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
by beta particle emission. He tried
lead Lead is a chemical element with the symbol Pb (from the Latin ) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cu ...
, without success, and then fluorine in the form of
calcium fluoride Calcium fluoride is the inorganic compound of the elements calcium and fluorine with the formula CaF2. It is a white insoluble solid. It occurs as the mineral fluorite (also called fluorspar), which is often deeply coloured owing to impurities. ...
, which emitted an alpha particle and produced
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
, decaying into
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
by beta particle emission. In all, he induced radioactivity in 22 different elements. Fermi rapidly reported the discovery of neutron-induced radioactivity in the Italian journal ''La Ricerca Scientifica'' on 25 March 1934. The natural radioactivity of
thorium Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is silvery and tarnishes black when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high ...
and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
made it hard to determine what was happening when these elements were bombarded with neutrons but, after correctly eliminating the presence of elements lighter than uranium but heavier than lead, Fermi concluded that they had created new elements, which he called
hesperium Hesperium (or esperium; atomic symbol Es) was the name assigned to the element with atomic number 94, now known as plutonium. It was named in Italian ''Esperio'' after a Greek name of Italy, Hesperia, "the land of the West". The same team assigned ...
and ausonium. The chemist
Ida Noddack Ida Noddack (25 February 1896 – 24 September 1978), '' née'' Tacke, was a German chemist and physicist. In 1934 she was the first to mention the idea later named nuclear fission. With her husband - Walter Noddack - and Otto Berg she discov ...
suggested that some of the experiments could have produced lighter elements than lead rather than new, heavier elements. Her suggestion was not taken seriously at the time because her team had not carried out any experiments with uranium or built the theoretical basis for this possibility. At that time, fission was thought to be improbable if not impossible on theoretical grounds. While physicists expected elements with higher atomic numbers to form from neutron bombardment of lighter elements, nobody expected neutrons to have enough energy to split a heavier atom into two light element fragments in the manner that Noddack suggested. The Via Panisperna boys also noticed some unexplained effects. The experiment seemed to work better on a wooden table than a marble tabletop. Fermi remembered that Joliot-Curie and Chadwick had noted that
paraffin wax Paraffin wax (or petroleum wax) is a soft colorless solid derived from petroleum, coal, or oil shale that consists of a mixture of hydrocarbon molecules containing between 20 and 40 carbon atoms. It is solid at room temperature and begins to ...
was effective at slowing neutrons, so he decided to try that. When neutrons were passed through paraffin wax, they induced a hundred times as much radioactivity in
silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
compared with when it was bombarded without the paraffin. Fermi guessed that this was due to the hydrogen atoms in the paraffin. Those in wood similarly explained the difference between the wooden and the marble tabletops. This was confirmed by repeating the effect with water. He concluded that collisions with hydrogen atoms slowed the neutrons. The lower the atomic number of the nucleus it collides with, the more energy a neutron loses per collision, and therefore the fewer collisions that are required to slow a neutron down by a given amount. Fermi realised that this induced more radioactivity because
slow neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
s were more easily captured than fast ones. He developed a diffusion equation to describe this, which became known as the Fermi age equation. In 1938, Fermi received the
Nobel Prize in Physics ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
at the age of 37 for his "demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of
nuclear reaction In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformatio ...
s brought about by slow neutrons". After Fermi received the prize in Stockholm, he did not return home to Italy but rather continued to New York City with his family in December 1938, where they applied for permanent residency. The decision to move to America and become US citizens was due primarily to the racial laws in Italy.


Manhattan Project

Fermi arrived in New York City on 2 January 1939. He was immediately offered positions at five universities, and accepted one at
Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manhatt ...
, where he had already given summer lectures in 1936. He received the news that in December 1938, the German chemists
Otto Hahn Otto Hahn (; 8 March 1879 – 28 July 1968) was a German chemist who was a pioneer in the fields of radioactivity and radiochemistry. He is referred to as the father of nuclear chemistry and father of nuclear fission. Hahn and Lise Meitner ...
and
Fritz Strassmann Friedrich Wilhelm Strassmann (; 22 February 1902 – 22 April 1980) was a German chemist who, with Otto Hahn in December 1938, identified the element barium as a product of the bombardment of uranium with neutrons. Their observation was the ke ...
had detected the element barium after bombarding uranium with neutrons, which Lise Meitner and her nephew Otto Frisch correctly interpreted as the result of nuclear fission. Frisch confirmed this experimentally on 13 January 1939. The news of Meitner and Frisch's interpretation of Hahn and Strassmann's discovery crossed the Atlantic with
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
, who was to lecture at
Princeton University Princeton University is a private research university in Princeton, New Jersey. Founded in 1746 in Elizabeth as the College of New Jersey, Princeton is the fourth-oldest institution of higher education in the United States and one of the ...
.
Isidor Isaac Rabi Isidor Isaac Rabi (; born Israel Isaac Rabi, July 29, 1898 – January 11, 1988) was an American physicist who won the Nobel Prize in Physics in 1944 for his discovery of nuclear magnetic resonance, which is used in magnetic resonance ima ...
and
Willis Lamb Willis Eugene Lamb Jr. (; July 12, 1913 – May 15, 2008) was an American physicist who won the Nobel Prize in Physics in 1955 "for his discoveries concerning the fine structure of the hydrogen spectrum." The Nobel Committee that year awarded hal ...
, two Columbia University physicists working at Princeton, found out about it and carried it back to Columbia. Rabi said he told Enrico Fermi, but Fermi later gave the credit to Lamb: Noddack was proven right after all. Fermi had dismissed the possibility of fission on the basis of his calculations, but he had not taken into account the
binding energy In physics and chemistry, binding energy is the smallest amount of energy required to remove a particle from a system of particles or to disassemble a system of particles into individual parts. In the former meaning the term is predominantly use ...
that would appear when a nuclide with an odd number of neutrons absorbed an extra neutron. For Fermi, the news came as a profound embarrassment, as the
transuranic elements The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements. ...
that he had partly been awarded the Nobel Prize for discovering had not been transuranic elements at all, but fission products. He added a footnote to this effect to his Nobel Prize acceptance speech. The scientists at Columbia decided that they should try to detect the energy released in the nuclear fission of uranium when bombarded by neutrons. On 25 January 1939, in the basement of
Pupin Hall Pupin Physics Laboratories , also known as Pupin Hall, is home to the physics and astronomy departments of Columbia University in New York City. The building is located on the south side of 120th Street, just east of Broadway. In 1965, Pupin was ...
at Columbia, an experimental team including Fermi conducted the first nuclear fission experiment in the United States. The other members of the team were Herbert L. Anderson, Eugene T. Booth, John R. Dunning, G. Norris Glasoe, and Francis G. Slack. The next day, the Fifth Washington Conference on Theoretical Physics began in Washington, D.C. under the joint auspices of
George Washington University The George Washington University (GW or GWU) is a Private university, private University charter#Federal, federally chartered research university in Washington, D.C. Chartered in 1821 by the United States Congress, GWU is the largest Higher educat ...
and the
Carnegie Institution of Washington The Carnegie Institution of Washington (the organization's legal name), known also for public purposes as the Carnegie Institution for Science (CIS), is an organization in the United States established to fund and perform scientific research. Th ...
. There, the news on nuclear fission was spread even further, fostering many more experimental demonstrations. French scientists
Hans von Halban Hans Heinrich von Halban (24 January 1908 – 28 November 1964) was a French physicist, of Austrian- Jewish descent. Family He was descended on his father's side from Polish Jews, who left Kraków for Vienna in the 1850s. His grandfather, Hei ...
,
Lew Kowarski Lew Kowarski (10 February 1907, Saint Petersburg – 30 July 1979, Geneva) was a naturalized French physicist. He was a lesser-known but important contributor to nuclear science. Early life Lew Kowarski was born in Saint Petersburg to Nicholas K ...
, and Frédéric Joliot-Curie had demonstrated that uranium bombarded by neutrons emitted more neutrons than it absorbed, suggesting the possibility of a chain reaction. Fermi and Anderson did so too a few weeks later.
Leó Szilárd Leo Szilard (; hu, Szilárd Leó, pronounced ; born Leó Spitz; February 11, 1898 – May 30, 1964) was a Hungarian-German-American physicist and inventor. He conceived the nuclear chain reaction in 1933, patented the idea of a nuclear ...
obtained of
uranium oxide Uranium oxide is an oxide of the element uranium. The metal uranium forms several oxides: * Uranium dioxide or uranium(IV) oxide (UO2, the mineral uraninite or pitchblende) * Diuranium pentoxide or uranium(V) oxide (U2O5) * Uranium trioxide o ...
from Canadian
radium Radium is a chemical element with the symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rathe ...
producer Eldorado Gold Mines Limited, allowing Fermi and Anderson to conduct experiments with fission on a much larger scale. Fermi and Szilárd collaborated on a design of a device to achieve a self-sustaining nuclear reaction—a
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
. Owing to the rate of absorption of neutrons by the hydrogen in water, it was unlikely that a self-sustaining reaction could be achieved with natural uranium and water as a neutron moderator. Fermi suggested, based on his work with neutrons, that the reaction could be achieved with uranium oxide blocks and
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
as a moderator instead of water. This would reduce the neutron capture rate, and in theory make a self-sustaining chain reaction possible. Szilárd came up with a workable design: a pile of uranium oxide blocks interspersed with graphite bricks. Szilárd, Anderson, and Fermi published a paper on "Neutron Production in Uranium". But their work habits and personalities were different, and Fermi had trouble working with Szilárd. Fermi was among the first to warn military leaders about the potential impact of nuclear energy, giving a lecture on the subject at the Navy Department on 18 March 1939. The response fell short of what he had hoped for, although the Navy agreed to provide $1,500 towards further research at Columbia. Later that year, Szilárd,
Eugene Wigner Eugene Paul "E. P." Wigner ( hu, Wigner Jenő Pál, ; November 17, 1902 – January 1, 1995) was a Hungarian-American theoretical physicist who also contributed to mathematical physics. He received the Nobel Prize in Physics in 1963 "for his co ...
, and
Edward Teller Edward Teller ( hu, Teller Ede; January 15, 1908 – September 9, 2003) was a Hungarian-American theoretical physicist who is known colloquially as "the father of the hydrogen bomb" (see the Teller–Ulam design), although he did not care for ...
sent the letter signed by Einstein to US president
Franklin D. Roosevelt Franklin Delano Roosevelt (; ; January 30, 1882April 12, 1945), often referred to by his initials FDR, was an American politician and attorney who served as the 32nd president of the United States from 1933 until his death in 1945. As the ...
, warning that
Nazi Germany Nazi Germany (lit. "National Socialist State"), ' (lit. "Nazi State") for short; also ' (lit. "National Socialist Germany") (officially known as the German Reich from 1933 until 1943, and the Greater German Reich from 1943 to 1945) was ...
was likely to build an atomic bomb. In response, Roosevelt formed the
Advisory Committee on Uranium The S-1 Executive Committee laid the groundwork for the Manhattan Project by initiating and coordinating the early research efforts in the United States, and liaising with the Tube Alloys Project in Britain. In the wake of the discovery of nucl ...
to investigate the matter. The Advisory Committee on Uranium provided money for Fermi to buy graphite, and he built a pile of graphite bricks on the seventh floor of the Pupin Hall laboratory. By August 1941, he had six tons of uranium oxide and thirty tons of graphite, which he used to build a still larger pile in Schermerhorn Hall at Columbia. The S-1 Section of the
Office of Scientific Research and Development The Office of Scientific Research and Development (OSRD) was an agency of the United States federal government created to coordinate scientific research for military purposes during World War II. Arrangements were made for its creation during May 1 ...
, as the Advisory Committee on Uranium was now known, met on 18 December 1941, with the US now engaged in
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposing ...
, making its work urgent. Most of the effort sponsored by the committee had been directed at producing
enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
, but Committee member Arthur Compton determined that a feasible alternative was
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
, which could be mass-produced in nuclear reactors by the end of 1944. He decided to concentrate the plutonium work at the
University of Chicago The University of Chicago (UChicago, Chicago, U of C, or UChi) is a private university, private research university in Chicago, Illinois. Its main campus is located in Chicago's Hyde Park, Chicago, Hyde Park neighborhood. The University of Chic ...
. Fermi reluctantly moved, and his team became part of the new Metallurgical Laboratory there. The possible results of a self-sustaining nuclear reaction were unknown, so it seemed inadvisable to build the first nuclear reactor on the University of Chicago campus in the middle of the city. Compton found a location in the Argonne Woods Forest Preserve, about from Chicago. Stone & Webster was contracted to develop the site, but the work was halted by an industrial dispute. Fermi then persuaded Compton that he could build the reactor in the
squash Squash may refer to: Sports * Squash (sport), the high-speed racquet sport also known as squash racquets * Squash (professional wrestling), an extremely one-sided match in professional wrestling * Squash tennis, a game similar to squash but pla ...
court under the stands of the University of Chicago's Stagg Field. Construction of the pile began on 6 November 1942, and Chicago Pile-1 went
critical Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
on 2 December. The shape of the pile was intended to be roughly spherical, but as work proceeded Fermi calculated that criticality could be achieved without finishing the entire pile as planned. This experiment was a landmark in the quest for energy, and it was typical of Fermi's approach. Every step was carefully planned, every calculation was meticulously done. When the first self-sustained nuclear chain reaction was achieved, Compton made a coded phone call to
James B. Conant James Bryant Conant (March 26, 1893 – February 11, 1978) was an American chemist, a transformative President of Harvard University, and the first U.S. Ambassador to West Germany. Conant obtained a Ph.D. in Chemistry from Harvard in 1916. ...
, the chairman of the
National Defense Research Committee The National Defense Research Committee (NDRC) was an organization created "to coordinate, supervise, and conduct scientific research on the problems underlying the development, production, and use of mechanisms and devices of warfare" in the Un ...
. To continue the research where it would not pose a public health hazard, the reactor was disassembled and moved to the Argonne Woods site. There Fermi directed experiments on nuclear reactions, reveling in the opportunities provided by the reactor's abundant production of free neutrons. The laboratory soon branched out from physics and engineering into using the reactor for biological and medical research. Initially, Argonne was run by Fermi as part of the University of Chicago, but it became a separate entity with Fermi as its director in May 1944. When the air-cooled X-10 Graphite Reactor at Oak Ridge went critical on 4 November 1943, Fermi was on hand just in case something went wrong. The technicians woke him early so that he could see it happen. Getting X-10 operational was another milestone in the plutonium project. It provided data on reactor design, training for DuPont staff in reactor operation, and produced the first small quantities of reactor-bred plutonium. Fermi became an American citizen in July 1944, the earliest date the law allowed. In September 1944, Fermi inserted the first uranium fuel slug into the
B Reactor The B Reactor at the Hanford Site, near Richland, Washington, was the first large-scale nuclear reactor ever built. The project was a key part of the Manhattan Project, the United States nuclear weapons development program during World War II. I ...
at the
Hanford Site The Hanford Site is a decommissioned nuclear production complex operated by the United States federal government on the Columbia River in Benton County in the U.S. state of Washington. The site has been known by many names, including SiteW a ...
, the production reactor designed to breed plutonium in large quantities. Like X-10, it had been designed by Fermi's team at the Metallurgical Laboratory and built by DuPont, but it was much larger and was water-cooled. Over the next few days, 838 tubes were loaded, and the reactor went critical. Shortly after midnight on 27 September, the operators began to withdraw the control rods to initiate production. At first, all appeared to be well, but around 03:00, the power level started to drop and by 06:30 the reactor had shut down completely. The Army and DuPont turned to Fermi's team for answers. The cooling water was investigated to see if there was a leak or contamination. The next day the reactor suddenly started up again, only to shut down once more a few hours later. The problem was traced to neutron poisoning from xenon-135 or Xe-135, a fission product with a half-life of 9.1 to 9.4 hours. Fermi and John Archibald Wheeler, John Wheeler both deduced that Xe-135 was responsible for absorbing neutrons in the reactor, thereby sabotaging the fission process. Fermi was recommended by colleague Emilio Segrè to ask Chien-Shiung Wu, as she prepared a printed draft on this topic to be published by the Physical Review. Upon reading the draft, Fermi and the scientists confirmed their suspicions: Xe-135 indeed absorbed neutrons, in fact it had a huge neutron cross-section. DuPont had deviated from the Metallurgical Laboratory's original design in which the reactor had 1,500 tubes arranged in a circle, and had added 504 tubes to fill in the corners. The scientists had originally considered this over-engineering a waste of time and money, but Fermi realized that if all 2,004 tubes were loaded, the reactor could reach the required power level and efficiently produce plutonium. In April 1943, Fermi raised with Robert Oppenheimer the possibility of using the radioactive byproducts from enrichment to contaminate the German food supply. The background was fear that the German atomic bomb project was already at an advanced stage, and Fermi was also skeptical at the time that an atomic bomb could be developed quickly enough. Oppenheimer discussed the "promising" proposal with Edward Teller, who suggested the use of strontium-90. James B. Conant and Leslie Groves were also briefed, but Oppenheimer wanted to proceed with the plan only if enough food could be contaminated with the weapon to kill half a million people. In mid-1944, Oppenheimer persuaded Fermi to join his Los Alamos Laboratory, Project Y at Los Alamos, New Mexico. Arriving in September, Fermi was appointed an associate director of the laboratory, with broad responsibility for nuclear and theoretical physics, and was placed in charge of F Division, which was named after him. F Division had four branches: F-1 Super and General Theory under Teller, which investigated the History of the Teller–Ulam design, "Super" (thermonuclear) bomb; F-2 Water Boiler under L. D. P. King, which looked after the "water boiler" Aqueous homogeneous reactor, aqueous homogeneous research reactor; F-3 Super Experimentation under Egon Bretscher; and F-4 Fission Studies under Anderson. Fermi observed the Trinity test on 16 July 1945 and conducted an experiment to estimate the bomb's yield by dropping strips of paper into the blast wave. He paced off the distance they were blown by the explosion, and calculated the yield as ten kilotons of TNT; the actual yield was about 18.6 kilotons. Along with Oppenheimer, Compton, and Ernest Lawrence, Fermi was part of the scientific panel that advised the Interim Committee on target selection. The panel agreed with the committee that atomic bombs would be used without warning against an industrial target. Like others at the Los Alamos Laboratory, Fermi found out about the atomic bombings of Hiroshima and Nagasaki from the public address system in the technical area. Fermi did not believe that atomic bombs would deter nations from starting wars, nor did he think that the time was ripe for world government. He therefore did not join the Association of Los Alamos Scientists.


Postwar work

Fermi became the Charles H. Swift Distinguished Professor of Physics at the University of Chicago on 1 July 1945, although he did not depart the Los Alamos Laboratory with his family until 31 December 1945. He was elected a member of the US National Academy of Sciences in 1945. The Metallurgical Laboratory became the Argonne National Laboratory on 1 July 1946, the first of the United States Department of Energy National Laboratories, national laboratories established by the Manhattan Project. The short distance between Chicago and Argonne allowed Fermi to work at both places. At Argonne he continued experimental physics, investigating neutron scattering with Leona Marshall. He also discussed theoretical physics with Maria Mayer, helping her develop insights into Spin–orbit interaction, spin–orbit coupling that would lead to her receiving the Nobel Prize. The Manhattan Project was replaced by the Atomic Energy Commission (AEC) on 1 January 1947. Fermi served on the AEC General Advisory Committee, an influential scientific committee chaired by Robert Oppenheimer. He also liked to spend a few weeks of each year at the Los Alamos National Laboratory, where he collaborated with Nicholas Metropolis, and with John von Neumann on Rayleigh–Taylor instability, the science of what occurs at the border between two fluids of different densities. After the detonation of the first Soviet
fission bomb A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions (thermonuclear bomb), producing a nuclear explosion. Both bomb ...
in August 1949, Fermi, along with Isidor Rabi, wrote a strongly worded report for the committee, opposing the development of a hydrogen bomb on moral and technical grounds. Nonetheless, Fermi continued to participate in work on the hydrogen bomb at Los Alamos as a consultant. Along with Stanislaw Ulam, he calculated that not only would the amount of tritium needed for Teller's model of a thermonuclear weapon be prohibitive, but a Nuclear fusion, fusion reaction could still not be assured to propagate even with this large quantity of tritium. Fermi was among the scientists who testified on Oppenheimer's behalf at the Oppenheimer security hearing in 1954 that resulted in denial of Oppenheimer's security clearance. In his later years, Fermi continued teaching at the University of Chicago, where he was a founder of what later became the
Enrico Fermi Institute __NOTOC__ The Institute for Nuclear Studies was founded September 1945 as part of the University of Chicago with Samuel King Allison as director. On November 20, 1955, it was renamed The Enrico Fermi Institute for Nuclear Studies. The name was s ...
. His PhD students in the postwar period included Owen Chamberlain, Geoffrey Chew, Jerome Isaac Friedman, Jerome Friedman, Marvin Goldberger, Tsung-Dao Lee, Arthur Rosenfeld and Sam Treiman. including the Nobel Lecture, 12 December 1938 ''Artificial Radioactivity Produced by Neutron Bombardment'' Jack Steinberger was a graduate student, and Mildred Dresselhaus was highly influenced by Fermi during the year she overlapped with him as a PhD student. Fermi conducted important research in particle physics, especially related to
pion In particle physics, a pion (or a pi meson, denoted with the Greek letter pi: ) is any of three subatomic particles: , , and . Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more gene ...
s and muons. He made the first predictions of pion-nucleon resonance, relying on statistical methods, since he reasoned that exact answers were not required when the theory was wrong anyway. In a paper coauthored with Chen Ning Yang, he speculated that pions might actually be composite particles. The idea was elaborated by Shoichi Sakata. It has since been supplanted by the quark model, in which the pion is made up of quarks, which completed Fermi's model, and vindicated his approach. Fermi wrote a paper "On the Origin of cosmic radiation, Cosmic Radiation" in which he proposed that cosmic rays arose through material being accelerated by magnetic fields in interstellar space, which led to a difference of opinion with Teller. Fermi examined the issues surrounding magnetic fields in the arms of a spiral galaxy. He mused about what is now referred to as the "Fermi paradox": the contradiction between the presumed probability of the existence of extraterrestrial life and the fact that contact has not been made. Toward the end of his life, Fermi questioned his faith in society at large to make wise choices about nuclear technology. He said:


Death

Fermi underwent what was called an "exploratory" operation in Billings Memorial Hospital in October 1954, after which he returned home. Fifty days later he died of inoperable stomach cancer in his home in Chicago. He was 53. Fermi suspected working near the nuclear pile involved great risk but he pressed on because the benefits outweighed the risks to his personal safety. Two of his graduate student assistants working near the pile also died of cancer. A memorial service was held at the Rockefeller Chapel, University of Chicago chapel, where colleagues Samuel K. Allison, Emilio Segrè, and Herbert L. Anderson spoke to mourn the loss of one of the world's "most brilliant and productive physicists." His body was interred at Oak Woods Cemetery where a private graveside service for the immediate family took place presided by a Lutheran chaplain.


Impact and legacy


Legacy

Fermi received numerous awards in recognition of his achievements, including the Matteucci Medal in 1926, the Nobel Prize for Physics in 1938, the Hughes Medal in 1942, the Franklin Medal in 1947, and the Rumford Prize in 1953. He was awarded the Medal for Merit in 1946 for his contribution to the Manhattan Project. Fermi was elected a List of Fellows of the Royal Society elected in 1950, Foreign Member of the Royal Society (FRS) in 1950. The Basilica of Santa Croce, Florence, known as the ''Temple of Italian Glories'' for its many graves of artists, scientists and prominent figures in Italian history, has a plaque commemorating Fermi. In 1999, ''Time (magazine), Time'' named Fermi on its list of the top 100 persons of the twentieth century. Fermi was widely regarded as an unusual case of a 20th-century physicist who excelled both theoretically and experimentally. Chemist and novelist C. P. Snow wrote, "if Fermi had been born a few years earlier, one could well imagine him discovering Ernest Rutherford, Rutherford's atomic nucleus, and then developing Bohr model, Bohr's theory of the hydrogen atom. If this sounds like hyperbole, anything about Fermi is likely to sound like hyperbole". Fermi was known as an inspiring teacher and was noted for his attention to detail, simplicity, and careful preparation of his lectures. Later, his lecture notes were transcribed into books. His papers and notebooks are today in the University of Chicago. Victor Weisskopf noted how Fermi "always managed to find the simplest and most direct approach, with the minimum of complication and sophistication." He disliked complicated theories, and while he had great mathematical ability, he would never use it when the job could be done much more simply. He was famous for getting quick and accurate answers to problems that would stump other people. Later on, his method of getting approximate and quick answers through back-of-the-envelope calculations became informally known as the " Fermi method", and is widely taught. Fermi was fond of pointing out that when Alessandro Volta was working in his laboratory, Volta had no idea where the study of electricity would lead. Fermi is generally remembered for his work on nuclear power and nuclear weapons, especially the creation of the first nuclear reactor, and the development of the first atomic and hydrogen bombs. His scientific work has stood the test of time. This includes his theory of beta decay, his work with non-linear systems, his discovery of the effects of slow neutrons, his study of pion-nucleon collisions, and his Fermi–Dirac statistics. His speculation that a pion was not a fundamental particle pointed the way towards the study of quarks and leptons.


Things named after Fermi

Many things bear Fermi's name. These include the Fermilab particle accelerator and physics lab in Batavia, Illinois, which was renamed in his honor in 1974, and the
Fermi Gamma-ray Space Telescope The Fermi Gamma-ray Space Telescope (FGST, also FGRST), formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is ...
, which was named after him in 2008, in recognition of his work on cosmic rays. Three nuclear reactor installations have been named after him: the Fermi 1 and Fermi 2 nuclear power plants in Newport, Michigan, the Enrico Fermi Nuclear Power Plant (Italy), Enrico Fermi Nuclear Power Plant at Trino Vercellese in Italy, and the RA-1 Enrico Fermi research reactor in Argentina. A synthetic element isolated from the debris of the 1952 Ivy Mike nuclear test was named
fermium Fermium is a synthetic element with the symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic qua ...
, in honor of Fermi's contributions to the scientific community. This makes him one of 16 scientists who have elements named after them. Since 1956, the United States Atomic Energy Commission has named its highest honor, the Fermi Award, after him. Recipients of the award have included Otto Hahn, Robert Oppenheimer, Edward Teller and Hans Bethe.


Publications

* * * * * * (with
Edoardo Amaldi Edoardo Amaldi (5 September 1908 – 5 December 1989) was an Italian physicist. He coined the term "neutrino" in conversations with Enrico Fermi distinguishing it from the heavier "neutron". He has been described as "one of the leading nuclear ...
) * * For a full list of his papers, see pages 75–78 in ref.


Patents

* * * * * * * * * * * * * *


Notes


References

* * * * * * * * * * * * * * * * * * * * * * * * * * * * *


External links


"To Fermi – with Love – Part 1"
Voices of the Manhattan Project 1971 Radio Segment
"The First Reactor: 40th Anniversary Commemorative Edition"
United States Department of Energy, (December 1982).
Nobel prize page for the 1938 physics' prize

The Story of the First Pile

Enrico Fermi's Case File
at The Franklin Institute with information about his contributions to theoretical and experimental physics.
"Remembering Enrico Fermi"
Session J1. APS April Meeting 2010, American Physical Society.

by Richard Rhodes 29 March 1999
Fermi's stay with Ehrenfest in Leiden
{{DEFAULTSORT:Fermi, Enrico Enrico Fermi, 1901 births 1954 deaths American nuclear physicists Italian nuclear physicists Experimental physicists Theoretical physicists Quantum physicists American relativity theorists Thermodynamicists 20th-century American physicists Manhattan Project people 20th-century Italian inventors Nobel laureates in Physics Italian Nobel laureates Medal for Merit recipients Members of the United States National Academy of Sciences Foreign Members of the Royal Society Corresponding Members of the USSR Academy of Sciences Members of the Royal Academy of Italy Members of the Lincean Academy Fellows of the American Physical Society Italian emigrants to the United States Monte Carlo methodologists University of Chicago faculty Columbia University faculty University of Göttingen faculty Sapienza University of Rome faculty University of Pisa alumni American agnostics Italian agnostics Italian Freemasons People from Leonia, New Jersey Scientists from Rome Deaths from stomach cancer Deaths from cancer in Illinois Burials in Illinois Italian exiles Naturalized citizens of the United States Recipients of the Matteucci Medal Winners of the Max Planck Medal Presidents of the American Physical Society