Accelerating Infrastructure Development Gordon Brown (8412051140) (cropped).jpg
   HOME

TheInfoList



OR:

In
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to object ...
, acceleration is the rate of change of the
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
of an object with respect to time. Accelerations are
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
quantities (in that they have
magnitude Magnitude may refer to: Mathematics *Euclidean vector, a quantity defined by both its magnitude and its direction *Magnitude (mathematics), the relative size of an object *Norm (mathematics), a term for the size or length of a vector *Order of ...
and direction). The orientation of an object's acceleration is given by the orientation of the ''net'' force acting on that object. The magnitude of an object's acceleration, as described by
Newton's Second Law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
, is the combined effect of two causes: * the net balance of all external forces acting onto that object — magnitude is
directly proportional In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio, which is called the coefficient of proportionality or proportionality constan ...
to this net resulting force; * that object's
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
, depending on the materials out of which it is made — magnitude is
inversely proportional In mathematics, two sequences of numbers, often experimental data, are proportional or directly proportional if their corresponding elements have a constant ratio, which is called the coefficient of proportionality or proportionality constan ...
to the object's mass. The SI unit for acceleration is
metre per second squared The metre per second squared is the unit of acceleration in the International System of Units (SI). As a derived unit, it is composed from the SI base units of length, the metre, and time, the second. Its symbol is written in several forms as m/ ...
(, \mathrm). For example, when a
vehicle A vehicle (from la, vehiculum) is a machine that transports people or cargo. Vehicles include wagons, bicycles, motor vehicles (motorcycles, cars, trucks, buses, mobility scooters for disabled people), railed vehicles (trains, trams), ...
starts from a standstill (zero velocity, in an
inertial frame of reference In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. ...
) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction and changes its motion vector. The acceleration of the vehicle in its current direction of motion is called a linear (or tangential during circular motions) acceleration, the
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction * Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and m ...
to which the passengers on board experience as a force pushing them back into their seats. When changing direction, the effecting acceleration is called radial (or centripetal during circular motions) acceleration, the reaction to which the passengers experience as a
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parall ...
. If the speed of the vehicle decreases, this is an acceleration in the opposite direction and mathematically a negative, sometimes called deceleration or retardation, and passengers experience the reaction to deceleration as an
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
l force pushing them forward. Such negative accelerations are often achieved by
retrorocket A retrorocket (short for ''retrograde rocket'') is a rocket engine providing thrust opposing the motion of a vehicle, thereby causing it to decelerate. They have mostly been used in spacecraft, with more limited use in short-runway aircraft land ...
burning in
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, p ...
. Both acceleration and deceleration are treated the same, as they are both changes in velocity. Each of these accelerations (tangential, radial, deceleration) is felt by passengers until their relative (differential) velocity are neutralized in
reference Reference is a relationship between objects in which one object designates, or acts as a means by which to connect to or link to, another object. The first object in this relation is said to ''refer to'' the second object. It is called a '' name'' ...
to the acceleration due to change in speed.


Definition and properties


Average acceleration

An object's average acceleration over a period of
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, ...
is its change in
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
, \Delta \mathbf, divided by the duration of the period, \Delta t. Mathematically, \bar = \frac.


Instantaneous acceleration

Instantaneous acceleration, meanwhile, is the limit of the average acceleration over an infinitesimal interval of time. In the terms of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, instantaneous acceleration is the
derivative In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of the velocity vector with respect to time: \mathbf = \lim_ \frac = \frac As acceleration is defined as the derivative of velocity, , with respect to time and velocity is defined as the derivative of position, , with respect to time, acceleration can be thought of as the
second derivative In calculus, the second derivative, or the second order derivative, of a function is the derivative of the derivative of . Roughly speaking, the second derivative measures how the rate of change of a quantity is itself changing; for example, ...
of with respect to : \mathbf = \frac = \frac (Here and elsewhere, if Rectilinear motion, motion is in a straight line,
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
quantities can be substituted by Scalar (physics), scalars in the equations.) By the fundamental theorem of calculus, it can be seen that the integral of the acceleration function is the velocity function ; that is, the area under the curve of an acceleration vs. time ( vs. ) graph corresponds to the change of velocity. \mathbf = \int \mathbf \, dt Likewise, the integral of the Jerk (physics), jerk function , the derivative of the acceleration function, can be used to find the change of acceleration at a certain time: \mathbf = \int \mathbf \, dt


Units

Acceleration has the dimensional analysis, dimensions of velocity (L/T) divided by time, i.e. length, L time, T−2. The SI unit of acceleration is the
metre per second squared The metre per second squared is the unit of acceleration in the International System of Units (SI). As a derived unit, it is composed from the SI base units of length, the metre, and time, the second. Its symbol is written in several forms as m/ ...
(m s−2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.


Other forms

An object moving in a circular motion—such as a satellite orbiting the Earth—is accelerating due to the change of direction of motion, although its speed may be constant. In this case it is said to be undergoing ''centripetal'' (directed towards the center) acceleration. Proper acceleration, the acceleration of a body relative to a free-fall condition, is measured by an instrument called an accelerometer. In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's laws of motion#Newton's second law, Newton’s second law): \mathbf = m\mathbf \quad \implies \quad \mathbf = \frac where is the net force acting on the body, is the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
of the body, and is the center-of-mass acceleration. As speeds approach the speed of light, Special relativity, relativistic effects become increasingly large.


Tangential and centripetal acceleration

The velocity of a particle moving on a curved path as a function (mathematics), function of time can be written as: \mathbf(t) = v(t) \frac = v(t) \mathbf_\mathrm(t) , with equal to the speed of travel along the path, and \mathbf_\mathrm = \frac \, , a Differential geometry of curves#Tangent vector, unit vector tangent to the path pointing in the direction of motion at the chosen moment in time. Taking into account both the changing speed and the changing direction of , the acceleration of a particle moving on a curved path can be written using the chain rule of differentiation for the product of two functions of time as: \begin \mathbf & = \frac \\ & = \frac \mathbf_\mathrm +v(t)\frac \\ & = \frac \mathbf_\mathrm+ \frac\mathbf_\mathrm\ , \end where is the unit (inward) Differential geometry of curves#Normal or curvature vector, normal vector to the particle's trajectory (also called ''the principal normal''), and is its instantaneous Curvature#Curvature of plane curves, radius of curvature based upon the Osculating circle#Mathematical description, osculating circle at time . These components are called the tangential acceleration and the normal or radial acceleration (or centripetal acceleration in circular motion, see also circular motion and centripetal force). Geometrical analysis of three-dimensional space curves, which explains tangent, (principal) normal and binormal, is described by the Frenet–Serret formulas.


Special cases


Uniform acceleration

''Uniform'' or ''constant'' acceleration is a type of motion in which the
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity i ...
of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field. The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength standard gravity, (also called ''acceleration due to gravity''). By
Newton's Second Law Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
the force \mathbf acting on a body is given by: \mathbf = m \mathbf Because of the simple analytic properties of the case of constant acceleration, there are simple formulas relating the Displacement (vector), displacement, initial and time-dependent velocity, velocities, and acceleration to the time in physics, time elapsed: \begin \mathbf(t) &= \mathbf_0 + \mathbf_0 t + \tfrac \mathbft^2 = \mathbf_0 + \tfrac \left(\mathbf_0 + \mathbf(t)\right) t \\ \mathbf(t) &= \mathbf_0 + \mathbf t \\ (t) &= ^2 + 2\mathbf[\mathbf(t)-\mathbf_0] \end where * t is the elapsed time, * \mathbf_0 is the initial displacement from the origin, * \mathbf(t) is the displacement from the origin at time t, * \mathbf_0 is the initial velocity, * \mathbf(t) is the velocity at time t, and * \mathbf is the uniform rate of acceleration. In particular, the motion can be resolved into two orthogonal parts, one of constant velocity and the other according to the above equations. As Galileo showed, the net result is parabolic motion, which describes, e. g., the trajectory of a projectile in a vacuum near the surface of Earth.


Circular motion

In uniform circular motion, that is moving with constant ''speed'' along a circular path, a particle experiences an acceleration resulting from the change of the direction of the velocity vector, while its magnitude remains constant. The derivative of the location of a point on a curve with respect to time, i.e. its velocity, turns out to be always exactly tangential to the curve, respectively orthogonal to the radius in this point. Since in uniform motion the velocity in the tangential direction does not change, the acceleration must be in radial direction, pointing to the center of the circle. This acceleration constantly changes the direction of the velocity to be tangent in the neighboring point, thereby rotating the velocity vector along the circle. * For a given speed v, the magnitude of this geometrically caused acceleration (centripetal acceleration) is inversely proportional to the radius r of the circle, and increases as the square of this speed: a_c = \frac \,. * Note that, for a given angular velocity \omega, the centripetal acceleration is directly proportional to radius r. This is due to the dependence of velocity v on the radius r. v = \omega r. Expressing centripetal acceleration vector in polar components, where \mathbf is a vector from the centre of the circle to the particle with magnitude equal to this distance, and considering the orientation of the acceleration towards the center, yields \mathbf = -\frac\cdot \frac\,. As usual in rotations, the speed v of a particle may be expressed as an angular velocity, ''angular speed'' with respect to a point at the distance r as \omega = \frac . Thus \mathbf = -\omega^2 \mathbf \,. This acceleration and the mass of the particle determine the necessary centripetal force, directed ''toward'' the centre of the circle, as the net force acting on this particle to keep it in this uniform circular motion. The so-called '
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parall ...
', appearing to act outward on the body, is a so-called pseudo force experienced in the frame of reference of the body in circular motion, due to the body's linear momentum, a vector tangent to the circle of motion. In a nonuniform circular motion, i.e., the speed along the curved path is changing, the acceleration has a non-zero component tangential to the curve, and is not confined to the Principal normal vector, principal normal, which directs to the center of the osculating circle, that determines the radius r for the centripetal acceleration. The tangential component is given by the angular acceleration \alpha, i.e., the rate of change \alpha = \dot\omega of the angular speed \omega times the radius r. That is, a_t = r \alpha. The sign of the tangential component of the acceleration is determined by the sign of the angular acceleration (\alpha), and the tangent is always directed at right angles to the radius vector.


Relation to relativity


Special relativity

The special theory of relativity describes the behavior of objects traveling relative to other objects at speeds approaching that of light in a vacuum. Newtonian mechanics is exactly revealed to be an approximation to reality, valid to great accuracy at lower speeds. As the relevant speeds increase toward the speed of light, acceleration no longer follows classical equations. As speeds approach that of light, the acceleration produced by a given force decreases, becoming infinitesimally small as light speed is approached; an object with mass can approach this speed asymptotically, but never reach it.


General relativity

Unless the state of motion of an object is known, it is impossible to distinguish whether an observed force is due to gravity or to acceleration—gravity and inertial acceleration have identical effects. Albert Einstein called this the equivalence principle, and said that only observers who feel no force at all—including the force of gravity—are justified in concluding that they are not accelerating.Brian Greene, ''The Fabric of the Cosmos: Space, Time, and the Texture of Reality'', page 67. Vintage


Conversions


See also

* Acceleration (differential geometry) * Four-vector: making the connection between space and time explicit * Gravitational acceleration * Inertia * Orders of magnitude (acceleration) * Shock (mechanics) * Shock and vibration data logger
measuring 3-axis acceleration * Space travel using constant acceleration * Specific force


References


External links


Acceleration Calculator
Simple acceleration unit converter
Acceleration Calculator
Acceleration Conversion calculator converts units form meter per second square, kilometer per second square, millimeter per second square & more with metric conversion. {{Authority control Acceleration, Dynamics (mechanics) Kinematic properties Temporal rates Vector physical quantities