Ferromagnetic superconductor
   HOME

TheInfoList



OR:

Ferromagnetic superconductors are materials that display intrinsic coexistence of
ferromagnetism Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
and superconductivity. They include UGe2, URhGe, and UCoGe. Evidence of ferromagnetic superconductivity was also reported for ZrZn2 in 2001, but later reports question these findings. These materials exhibit superconductivity in proximity to a magnetic quantum critical point. The nature of the superconducting state in ferromagnetic superconductors is currently under debate. Early investigations studied the coexistence of conventional ''s''-wave superconductivity with itinerant ferromagnetism. However, the scenario of spin-triplet pairing soon gained the upper hand. A mean-field model for coexistence of spin-triplet pairing and ferromagnetism was developed in 2005. These models consider uniform coexistence of ferromagnetism and superconductivity, i.e. the same electrons which are both ferromagnetic and superconducting at the same time. Another scenario where there is an interplay between magnetic and superconducting order in the same material is superconductors with spiral or helical magnetic order. Examples of such include ErRh4B4 and HoMo6S8. In these cases, the superconducting and magnetic order parameters entwine each other in a spatially modulated pattern, which allows for their mutual coexistence, although it is no longer uniform. Even spin-singlet pairing may coexist with ferromagnetism in this manner.


Theory

In conventional superconductors, the electrons constituting the
Cooper pair In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
have opposite spin, forming so-called spin-singlet pairs. However, other types of pairings are also permitted by the governing Pauli-principle. In the presence of a magnetic field, spins tend to align themselves with the field, which means that a magnetic field is detrimental for the existence of spin-singlet Cooper pairs. A viable mean-field Hamiltonian for modelling itinerant ferromagnetism coexisting with a non-unitary spin-triplet state may after diagonalization be written as: H = H_0 + \sum_ E_\gamma_^\dagger \gamma_, H_0 = \frac \sum_(\xi_ - E_ - \Delta_^\dagger b_) + INM^2/2, E_ = \sqrt.


See also

* Bean's critical state model


References


Further reading

* * *
Ferromagnetic superconductors – List of Authority Articles on arxiv.org
{{magnetic states Superconductivity Ferromagnetism