Ferromagnetic resonance
   HOME

TheInfoList



OR:

Ferromagnetic resonance, or FMR, is coupling between an
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
and the
magnetization In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Movement within this field is described by direction and is either Axial or D ...
of a medium through which it passes. This coupling induces a significant loss of power of the wave. The power is absorbed by the precessing magnetization ( Larmor precession) of the material and lost as heat. For this coupling to occur, the frequency of the incident wave must be equal to the precession frequency of the magnetization (Larmor frequency) and the polarization of the wave must match the orientation of the magnetization. This effect can be used for various applications such as
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
techniques or conception of
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ra ...
devices. The FMR
spectroscopic Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter wa ...
technique is used to probe the
magnetization In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Movement within this field is described by direction and is either Axial or D ...
of
ferromagnetic Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
materials. It is a standard tool for probing spin waves and spin dynamics. FMR is very broadly similar to
electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
(EPR), and also somewhat similar to
nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...
(NMR), except that FMR probes the sample magnetization resulting from the
magnetic moment In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. Examples of objects that have magnetic moments include loops of electric current (such as electroma ...
s of dipolar-coupled but unpaired
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have n ...
s, while NMR probes the magnetic moment of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
that are screened by the atomic or molecular orbitals surrounding such nuclei of non-zero nuclear spin. The FMR resonance is also the basis of various high-frequency electronic devices, such as resonance isolators or
circulator A circulator is a passive, non-reciprocal three- or four- port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where ...
s.


History

Ferromagnetic resonance was experimentally discovered by V. K. Arkad'yev when he observed the
absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which s ...
of
UHF Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (on ...
radiation by ferromagnetic materials in 1911. A qualitative explanation of FMR along with an explanation of the results from Arkad'yev was offered up by Ya. G. Dorfman in 1923 when he suggested that the
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
transitions due to Zeeman splitting could provide a way to study ferromagnetic structure. A 1935 paper published by
Lev Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ac ...
and
Evgeny Lifshitz Evgeny Mikhailovich Lifshitz (russian: Евге́ний Миха́йлович Ли́фшиц; February 21, 1915, Kharkiv, Russian Empire – October 29, 1985, Moscow, Russian SFSR) was a leading Soviet physicist and brother of the physicist ...
predicted the existence of ferromagnetic resonance of the Larmor precession, which was independently verified in experiments by J. H. E. Griffiths (UK) and E. K. Zavoiskij (USSR) in 1946.


Description

FMR arises from the precessional motion of the (usually quite large) magnetization \scriptstyle\vec of a ferromagnetic material in an external magnetic field \scriptstyle\vec. The magnetic field exerts a
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
on the sample magnetization which causes the magnetic moments in the sample to
precess Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In othe ...
. The precession frequency of the magnetization depends on the orientation of the material, the strength of the magnetic field, as well as the macroscopic magnetization of the sample; the effective precession frequency of the ferromagnet is much lower in value from the precession frequency observed for free electrons in EPR. Moreover, linewidths of absorption peaks can be greatly affected both by dipolar-narrowing and exchange-broadening (quantum) effects. Furthermore, not all absorption peaks observed in FMR are caused by the precession of the magnetic moments of electrons in the ferromagnet. Thus, the theoretical analysis of FMR spectra is far more complex than that of EPR or NMR spectra. The basic setup for an FMR experiment is a microwave resonant cavity with an
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in ...
. The resonant cavity is fixed at a frequency in the
super high frequency Super high frequency (SHF) is the ITU designation for radio frequencies (RF) in the range between 3 and 30 gigahertz (GHz). This band of frequencies is also known as the centimetre band or centimetre wave as the wavelengths range from one t ...
band. A detector is placed at the end of the cavity to detect the microwaves. The magnetic sample is placed between the poles of the electromagnet and the
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
is swept while the resonant absorption intensity of the microwaves is detected. When the magnetization precession frequency and the resonant cavity frequency are the same, absorption increases sharply which is indicated by a decrease in the intensity at the detector. Furthermore, the resonant absorption of microwave energy causes local heating of the ferromagnet. In samples with local magnetic parameters varying on the nanometer scale this effect is used for spatial dependent spectroscopy investigations. The resonant frequency of a film with parallel applied external field B is given by the Kittel formula: : f = \frac \sqrt where M is the magnetization of the ferromagnet and \gamma is the
gyromagnetic ratio In physics, the gyromagnetic ratio (also sometimes known as the magnetogyric ratio in other disciplines) of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol , gamma. Its SI u ...
.


See also

*
Electron paramagnetic resonance Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spin ...
*
Nuclear magnetic resonance Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a ...


References


Further reading

* *


External links


Calculation of some important resonance fields




(Wolfgang Kuch, Freie Universität Berlin) {{Branches of spectroscopy Spectroscopy Magnetic ordering