Face diagonal
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, a face diagonal of a
polyhedron In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional figure with flat polygonal Face (geometry), faces, straight Edge (geometry), edges and sharp corners or Vertex (geometry), vertices. The term "polyhedron" may refer ...
is a
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek Î ...
on one of the
faces The face is the front of the head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affect the ...
, in contrast to a ''
space diagonal In geometry, a space diagonal (also interior diagonal or body diagonal) of a polyhedron is a line connecting two vertices that are not on the same face. Space diagonals contrast with '' face diagonals'', which connect vertices on the same face (b ...
'' passing through the interior of the polyhedron. A
cuboid In geometry, a cuboid is a hexahedron with quadrilateral faces, meaning it is a polyhedron with six Face (geometry), faces; it has eight Vertex (geometry), vertices and twelve Edge (geometry), edges. A ''rectangular cuboid'' (sometimes also calle ...
has twelve face diagonals (two on each of the six faces), and it has four space diagonals. The cuboid's face diagonals can have up to three different lengths, since the faces come in congruent pairs and the two diagonals on any face are equal. The cuboid's space diagonals all have the same length. If the edge lengths of a cuboid are ''a'', ''b'', and ''c'', then the distinct rectangular faces have edges (''a'', ''b''), (''a'', ''c''), and (''b'', ''c''); so the respective face diagonals have lengths \sqrt, \sqrt, and \sqrt. Thus each face diagonal of a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
with side length ''a'' is a\sqrt 2. A regular
dodecahedron In geometry, a dodecahedron (; ) or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three Kepler–Po ...
has 60 face diagonals (and 100 space diagonals)..


References

Elementary geometry {{Elementary-geometry-stub