Exoglucanase
   HOME

TheInfoList



OR:

Cellulose 1,4-beta-cellobiosidase (, exo-cellobiohydrolase, beta-1,4-glucan cellobiohydrolase, beta-1,4-glucan cellobiosylhydrolase, 1,4-beta-glucan cellobiosidase, exoglucanase, avicelase, CBH 1, C1 cellulase, cellobiohydrolase I, cellobiohydrolase, exo-beta-1,4-glucan cellobiohydrolase, 1,4-beta-D-glucan cellobiohydrolase, cellobiosidase) is an
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
of interest for its capability of converting
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell w ...
to useful chemicals, particularly
cellulosic ethanol Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It can be produced from grasses, wood, algae, or other plants. It is generally discussed for use as a ...
. The main technological impediment to widespread utilization of cellulose for fuels is still the lack of low-cost technologies to convert cellulose. One solution is the use of organisms that are capable of performing this conversion. Development of such organisms, such as Saccharomyces cerevisiae which is capable of secreting high levels of cellobiohydrolases, is already underway. Cellobiohydrolases are exoglucanases derived from fungi. The
systematic name A systematic name is a name given in a systematic way to one unique group, organism, object or chemical substance, out of a specific population or collection. Systematic names are usually part of a nomenclature. A semisystematic name or semitrivial ...
is 4-beta-D-glucan cellobiohydrolase (non-reducing end).


Function

This enzyme catalyses the following
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
: :
Hydrolysis Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolys ...
of (1->4)-beta-D-glucosidic linkages in
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell w ...
and cellotetraose, releasing cellobiose from the non-reducing ends of the chains CBH1 from yeast, for example, is composed of a carbohydrate binding site, a linker region and a catalytic domain. Once the cellulose chain is bound, it is strung through a tunnel-shaped active site where the cellulose is broken down into two-sugar segments called cellobiose. The structure of the enzyme can be seen in the first figure. The second figure shows the activity of the enzyme, and shows both cellulose binding to the enzyme, as well as the product of this step, cellobiose. Research suggests, however, that the activity of CBH1 is very strong inhibited by the product, cellobiose. Determination of an enzyme that is not as strongly inhibited by the product or finding a way to remove cellobiose from the environment of the enzyme are just more examples of the many challenges that face the use of these enzymes for the creation of biofuels. After above step, the process for creating ethanol is as follows: 3. Separation of sugars from other plant material. 4. Microbial fermentation of the sugar solution to create alcohol. 5. Distillation to purify the products and produce roughly 9% pure alcohol 6. Further purification to bring the ethanol purity to roughly 99.5% Some notable improvements have been made in this area as well. For example, a strain of yeast capable of producing its own cellulose digesting enzyme has been developed, which would allow the cellulose degradation and the fermentation steps could be at once.Galazka, M. Jonathan et al. (September 9, 2010)

"Cellodextrin Transport in Yeast for Improved Biofuel Production"
This is an important development in the sense that it makes large scale, industrial applications more feasible.


References


External links

* {{Portal bar, Biology, border=no EC 3.2.1