Evolved Laser Interferometer Space Antenna
   HOME

TheInfoList



OR:

The Laser Interferometer Space Antenna (LISA) is a proposed space probe to detect and accurately measure
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
—tiny ripples in the fabric of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
—from astronomical sources. LISA would be the first dedicated space-based
gravitational wave detector A gravitational-wave detector (used in a gravitational-wave observatory) is any device designed to measure tiny distortions of spacetime called gravitational waves. Since the 1960s, various kinds of gravitational-wave detectors have been built ...
. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million kilometres long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave. The LISA project started out as a joint effort between
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the US federal government responsible for the civil List of government space agencies, space program ...
and the European Space Agency (ESA). However, in 2011, NASA announced that it would be unable to continue its LISA partnership with the European Space Agency due to funding limitations. The project is a recognized CERN experiment (RE8). A scaled down design initially known as the New Gravitational-wave Observatory (NGO) was proposed as one of three large projects in ESA's long term plans. In 2013, ESA selected 'The Gravitational Universe' as the theme for one of its three large projects in the 2030s whereby it committed to launch a space-based gravitational wave observatory. In January 2017, LISA was proposed as the candidate mission. On June 20, 2017 the suggested mission received its clearance goal for the 2030s, and was approved as one of the main research missions of ESA. The LISA mission is designed for direct observation of
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
, which are distortions of
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
travelling at the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
. Passing gravitational waves alternately squeeze and stretch space itself by a tiny amount. Gravitational waves are caused by energetic events in the universe and, unlike any other radiation, can pass unhindered by intervening mass. Launching LISA will add a new sense to scientists' perception of the universe and enable them to study phenomena that are invisible in normal light. Potential sources for signals are merging massive black holes at the centre of galaxies,See sect. 5.2 in massive black holesSee sect. 4.3 in orbited by small compact objects, known as
extreme mass ratio inspiral In astrophysics, an extreme mass ratio inspiral (EMRI) is the orbit of a relatively light object around a much heavier (by a factor 10,000 or more) object, that gradually spirals in due to the emission of gravitational waves. Such systems are lik ...
s,
binaries A binary file is a computer file that is not a text file. The term "binary file" is often used as a term meaning "non-text file". Many binary file formats contain parts that can be interpreted as text; for example, some computer document fil ...
of compact stars in our Galaxy,See sect. 3.3 in and possibly other sources of cosmological origin, such as the very early phase of the Big Bang,See sect. 7.2 in and speculative astrophysical objects like
cosmic strings Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simp ...
and domain boundaries.See sect. 1.1 in


Mission description

The LISA mission's primary objective is to detect and measure gravitational waves produced by compact binary systems and mergers of supermassive black holes. LISA will observe gravitational waves by measuring differential changes in the length of its arms, as sensed by laser interferometry. Each of the three LISA spacecraft contains two telescopes, two lasers and two test masses (each a 46 mm, roughly 2 kg, gold-coated cube of gold/platinum), arranged in two optical assemblies pointed at the other two spacecraft. This forms Michelson-like interferometers, each centred on one of the spacecraft, with the test masses defining the ends of the arms. The entire arrangement, which is ten times larger than the orbit of the Moon, will be placed in solar orbit at the same distance from the Sun as the Earth, but trailing the Earth by 20 degrees, and with the orbital planes of the three spacecraft inclined relative to the ecliptic by about 0.33 degree, which results in the plane of the triangular spacecraft formation being tilted 60 degrees from the plane of the ecliptic. The mean linear distance between the formation and the Earth will be 50 million kilometres. To eliminate non-gravitational forces such as light pressure and
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
on the test masses, each spacecraft is constructed as a
zero-drag satellite Zero-drag satellites or drag-free satellites are satellites where the payload follows a geodesic path through space only affected by gravity and not by non-gravitational forces such as drag of the residual atmosphere, light pressure and solar w ...
. The test mass floats free inside, effectively in free-fall, whilst the spacecraft around it absorbs all these local non-gravitational forces. Then, using
capacitive sensing In electrical engineering, capacitive sensing (sometimes capacitance sensing) is a technology, based on capacitive coupling, that can detect and measure anything that is conductive or has a dielectric constant different from air. Many types of s ...
to determine the spacecraft's position relative to the mass, very precise thrusters adjust the spacecraft so that it follows, keeping itself centered around the mass.


Arm length

The longer the arms, the more sensitive the detector is to long-period gravitational waves, but its sensitivity to wavelengths shorter than the arms (2,500,000 km corresponds to  seconds or  Hz) is reduced. As the satellites are free-flying, the spacing is easily adjusted before launch, with upper bounds being imposed by the sizes of the telescopes required at each end of the interferometer (which are constrained by the size of the launch vehicle's payload fairing) and the stability of the constellation orbit (larger constellations are more sensitive to the gravitational effects of other planets, limiting the mission lifetime). Another length-dependent factor which must be compensated for is the "point-ahead angle" between the incoming and outgoing laser beams; the telescope must receive its incoming beam from where its partner was a few seconds ago, but send its outgoing beam to where its partner will be a few seconds from now. The original 2008 LISA proposal had arms 5 million kilometres (5 Gm) long. When downscoped to eLISA in 2013, arms of 1 million kilometres were proposed. The approved 2017 LISA proposal has arms 2.5 million kilometres (2.5 Gm) long.


Detection principle

Like most modern
gravitational wave observatories In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong ...
, LISA is based on laser interferometry. Its three satellites form a giant
Michelson interferometer The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those ...
in which two "slave" satellites play the role of reflectors and one "master" satellite the roles of source and observer. When a gravitational wave passes the interferometer, the lengths of the two LISA arms vary due to
spacetime In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differ ...
distortions caused by the wave. Practically, LISA measures a relative
phase shift In physics and mathematics, the phase of a periodic function F of some real variable t (such as time) is an angle-like quantity representing the fraction of the cycle covered up to t. It is denoted \phi(t) and expressed in such a scale that it ...
between one local laser and one distant laser by light interference. Comparison between the observed laser beam frequency (in return beam) and the local laser beam frequency (sent beam) encodes the wave parameters. Unlike terrestrial gravitational wave observatories, LISA cannot keep its arms "locked" in position at a fixed length. Instead, the distances between satellites varies significantly over each year's orbit, and the detector must keep track of the constantly changing distance, counting the millions of wavelengths by which the distance changes each second. Then, the signals are separated in the
frequency domain In physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a s ...
: changes with periods of less than a day are signals of interest, while changes with periods of a month or more are irrelevant. This difference means that LISA cannot use high-finesse Fabry–Pérot resonant arm cavities and signal recycling systems like terrestrial detectors, limiting its length-measurement accuracy. But with arms almost a million times longer, the motions to be detected are correspondingly larger.


LISA Pathfinder

An ESA test mission called
LISA Pathfinder LISA Pathfinder, formerly Small Missions for Advanced Research in Technology-2 (SMART-2), was an ESA spacecraft that was launched on 3 December 2015 on board Vega flight VV06. The mission tested technologies needed for the Laser Interferometer S ...
(LPF) was launched in 2015 to test the technology necessary to put a test mass in (almost) perfect free fall conditions. LPF consists of a single spacecraft with one of the LISA interferometer arms shortened to about , so that it fits inside a single spacecraft. The spacecraft reached its operational location in heliocentric orbit at the Lagrange point L1 on 22 January 2016, where it underwent payload commissioning. Scientific research started on March 8, 2016. The goal of LPF was to demonstrate a noise level 10 times worse than needed for LISA. However, LPF exceeded this goal by a large margin, approaching the LISA requirement noise levels.


Science goals

Gravitational-wave astronomy Gravitational-wave astronomy is an emerging branch of observational astronomy which aims to use gravitational waves (minute distortions of spacetime predicted by Albert Einstein's theory of general relativity) to collect observational data about ...
seeks to use direct measurements of gravitational waves to study astrophysical systems and to test Einstein's theory of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
. Indirect evidence of
gravitational waves Gravitational waves are waves of the intensity of gravity generated by the accelerated masses of an orbital binary system that propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1 ...
was derived from observations of the decreasing orbital periods of several
binary pulsar A binary pulsar is a pulsar with a binary companion, often a white dwarf or neutron star. (In at least one case, the double pulsar PSR J0737-3039, the companion neutron star is another pulsar as well.) Binary pulsars are one of the few objects ...
s, such as the
Hulse–Taylor binary The Hulse–Taylor binary is a binary star system composed of a neutron star and a pulsar (known as PSR B1913+16, PSR J1915+1606 or PSR 1913+16) which orbit around their common center of mass. It is the first binary pulsar ever discovere ...
. In February 2016, the
Advanced LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
project announced that it had directly detected gravitational waves from a black hole merger. Observing gravitational waves requires two things: a strong source of gravitational waves—such as the merger of two black holes—and extremely high detection sensitivity. A LISA-like instrument should be able to measure relative displacements with a resolution of 20  picometres—less than the diameter of a helium atom—over a distance of a million kilometres, yielding a strain sensitivity of better than 1 part in 1020 in the low-frequency band about a millihertz. A LISA-like detector is sensitive to the low-frequency band of the gravitational-wave spectrum, which contains many astrophysically interesting sources. Such a detector would observe signals from binary stars within our galaxy (the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
); signals from binary
supermassive black holes A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions of times the mass of the Sun (). Black holes are a class of astronomical ob ...
in other galaxies; and extreme-mass-ratio inspirals and bursts produced by a stellar-mass compact object orbiting a supermassive black hole. There are also more speculative signals such as signals from
cosmic string Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simp ...
s and primordial gravitational waves generated during
cosmological inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singularit ...
.


Galactic compact binaries

LISA will be able to detect the nearly monochromatic gravitational waves emanating of close binaries consisting of two compact stellar objects (
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes ...
s,
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
s, and black holes) in the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
. At low frequencies these are actually expected to be so numerous that they form a source of (foreground) noise for LISA data analysis. At higher frequencies LISA is expected to detect and resolve around 25,000 galactic compact binaries. Studying the distribution of the masses, periods, and locations of this population, will teach us about the formation and evolution of binary systems in the galaxy. Furthermore, LISA will be able to resolve 10 binaries currently known from electromagnetic observations (and find ≈500 more with electromagnetic counterparts within one square degree). Joint study of these systems will allow inference on other dissipation mechanisms in these systems, e.g. through tidal interactions. One of the currently known binaries that LISA will be able to resolve is the white dwarf binary ZTF J1539+5027 with a period of 6.91 minutes, the second shortest period binary white dwarf pair discovered to date.


Supermassive black hole mergers

LISA will be able to detect the gravitational waves from the merger of a pair of (super)massive black holes with a
chirp mass In astrophysics the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves Gravitational waves are waves of the intensity of gravity genera ...
between 103 and 107 solar masses all the way back to their earliest formation at redshift around ''z'' ≈ 15. The most conservative population models expect at least a few such events to happen each year. For mergers closer by (''z'' < 3), it will be able to determine the spins of the components, which carry information about the past evolution of the components (e.g. whether they have grown primarily through accretion or mergers). For mergers around the peak of star formation (''z'' ≈ 2) LISA will be able to locate mergers within 100 square degrees on the night sky at least 24 hours before the actual merger, allowing electromagnetic telescopes to search for counterparts, with the potential of witnessing the formation of a quasar after a merger.


Extreme mass ratio inspirals

Extreme mass ratio inspirals (EMRIs) consist of a stellar compact object (<60 solar masses) on a slowly decaying orbit around a massive black hole of around 105 solar masses. For the ideal case of a prograde orbit around a (nearly) maximally spinning black hole, LISA will be able to detect these events up to ''z'' = 4. EMRIs are interesting because they are slowly evolving, spending around 105 orbits and between a few months and a few years in the LISA sensitivity band before merging. This allows very accurate (up to an error of 1 in 104) measurements of the properties of the system, including the mass and spin of the central object and the mass and orbital elements (
eccentricity Eccentricity or eccentric may refer to: * Eccentricity (behavior), odd behavior on the part of a person, as opposed to being "normal" Mathematics, science and technology Mathematics * Off-Centre (geometry), center, in geometry * Eccentricity (g ...
and
inclination Orbital inclination measures the tilt of an object's orbit around a celestial body. It is expressed as the angle between a reference plane and the orbital plane or axis of direction of the orbiting object. For a satellite orbiting the Eart ...
) of the smaller object. EMRIs are expected to occur regularly in the centers of most galaxies and in dense star clusters. Conservative population estimates predict at least one detectable event per year for LISA.


Intermediate mass black hole binaries

LISA will also be able to detect the gravitational waves emanating from black hole binary mergers where the lighter black hole is in the intermediate black hole range (between 102 and 104 solar masses). In the case of both components being intermediate black holes between 600 and 104 solar masses, LISA will be able to detect events up to redshifts around 1. In the case of an intermediate mass black hole spiralling into a massive black hole (between 104 and 106 solar masses) events will be detectable up to at least ''z'' = 3. Since little is known about the population of intermediate mass black holes, there is no good estimate of the event rates for these events.


Multi-band gravitational wave astronomy

Following the announcement of the first gravitational wave detection, GW150914, it was realized that a similar event would be detectable by LISA well before the merger. Based on the LIGO estimated event rates, it is expected that LISA will detect and resolve about 100 binaries that would merge a few weeks to months later in the LIGO detection band. LISA will be able to accurately predict the time of merger ahead of time and locate the event with 1 square degree on the sky. This will greatly aid the possibilities for searches for electromagnetic counterpart events.


Fundamental black hole physics

Gravitational wave signals from black holes could provide hints at a quantum theory of gravity.


Probe expansion of the universe

LISA will be able to independently measure the redshift and distance of events occurring relatively close by (''z'' < 0.1) through the detection of massive black hole mergers and EMRIs. Consequently, it can make an independent measurement of the
Hubble parameter Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving a ...
''H''0 that does not depend on the use of the
cosmic distance ladder The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A ''direct'' distance measurement of an astronomical object is possible o ...
. The accuracy of such a determination is limited by the sample size and therefore the mission duration. With a mission lifetime of 4 years one expects to be able to determine ''H''0 with an absolute error of 0.01 (km/s)/Mpc. At larger ranges LISA events can (stochastically) be linked to electromagnetic counterparts, to further constrain the expansion curve of the universe.


Gravitational wave background

Finally, LISA will be sensitive to the stochastic
gravitational wave background The gravitational wave background (also GWB and stochastic background) is a random gravitational-wave signal potentially detectable by gravitational wave detection experiments. Since the background is supposed to be statistically random, it has ...
generated in the early universe through various channels, including
inflation In economics, inflation is an increase in the general price level of goods and services in an economy. When the general price level rises, each unit of currency buys fewer goods and services; consequently, inflation corresponds to a reduct ...
, first order phase transitions related to
spontaneous symmetry breaking Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or ...
, and
cosmic string Cosmic strings are hypothetical 1-dimensional topological defects which may have formed during a symmetry-breaking phase transition in the early universe when the topology of the vacuum manifold associated to this symmetry breaking was not simp ...
s.


Exotic sources

LISA will also search for currently unknown (and unmodelled) sources of gravitational waves. The history of astrophysics has shown that whenever a new frequency range/medium of detection is available new unexpected sources show up. This could for example include kinks and cusps in cosmic strings.


Other gravitational-wave experiments

Previous searches for gravitational waves in space were conducted for short periods by planetary missions that had other primary science objectives (such as Cassini–Huygens), using microwave Doppler tracking to monitor fluctuations in the Earth–spacecraft distance. By contrast, LISA is a dedicated mission that will use laser interferometry to achieve a much higher sensitivity. Other gravitational wave antennas, such as
LIGO The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large ...
,
VIRGO Virgo may refer to: *Virgo (astrology), the sixth astrological sign of the zodiac * Virgo (constellation), a constellation *Virgo Cluster, a cluster of galaxies in the constellation Virgo *Virgo Stellar Stream, remains of a dwarf galaxy * Virgo Su ...
, and
GEO 600 GEO600 is a gravitational wave detector located near Sarstedt, a town 20 km to the south of Hanover, Germany. It is designed and operated by scientists from the Max Planck Institute for Gravitational Physics, Max Planck Institute of Quantum Opt ...
, are already in operation on Earth, but their sensitivity at low frequencies is limited by the largest practical arm lengths, by seismic noise, and by interference from nearby moving masses. Thus, LISA and ground detectors are complementary rather than competitive, much like astronomical observatories in different electromagnetic bands (e.g.,
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
).


History

The first design studies for gravitational wave detector to be flown in space were performed in the 1980s under the name LAGOS (Laser Antena for Gravitational radiation Observation in Space). LISA was first proposed as a mission to ESA in the early 1990s. First as a candidate for the M3-cycle, and later as 'cornerstone mission' for the 'Horizon 2000 plus' program. As the decade progressed, the design was refined to a triangular configuration of three spacecraft with three 5-million-kilometre arms. This mission was pitched as a joint mission between ESA and NASA in 1997. In the 2000s the joint ESA/NASA LISA mission was identified as a candidate for the 'L1' slot in ESA's Cosmic Vision 2015–2025 programme. However, due to budget cuts, NASA announced in early 2011 that it would not be contributing to any of ESA's L-class missions. ESA nonetheless decided to push the program forward, and instructed the L1 candidate missions to present reduced cost versions that could be flown within ESA's budget. A reduced version of LISA was designed with only two 1-million-kilometre arms under the name NGO (New/Next Gravitational wave Observatory). Despite NGO being ranked highest in terms of scientific potential, ESA decided to fly
Jupiter Icy Moon Explorer The Jupiter Icy Moons Explorer (JUICE) is an interplanetary spacecraft in development by the European Space Agency (ESA) with Airbus Defence and Space as the main contractor. The mission will study three of Jupiter's Galilean moons: Ganymede, ...
(JUICE) as its L1 mission. One of the main concerns was that the
LISA Pathfinder LISA Pathfinder, formerly Small Missions for Advanced Research in Technology-2 (SMART-2), was an ESA spacecraft that was launched on 3 December 2015 on board Vega flight VV06. The mission tested technologies needed for the Laser Interferometer S ...
mission had been experiencing technical delays, making it uncertain if the technology would be ready for the projected L1 launch date. Soon afterwards, ESA announced it would be selecting themes for its Large class L2 and L3 mission slots. A theme called "the Gravitational Universe" was formulated with the reduced NGO rechristened eLISA as a straw-man mission. In November 2013, ESA announced that it selected "the Gravitational Universe" for its L3 mission slot (expected launch in 2034). Following the successful detection of gravitational waves by the LIGO, ground-based detectors in September 2015, NASA expressed interest in rejoining the mission as a junior partner. In response to an ESA call for mission proposals for the `Gravitational Universe' themed L3 mission, a mission proposal for a detector with three 2.5-million-kilometre arms again called LISA was submitted in January 2017. As of November 2021, LISA is expected to launch in 2037.


See also

*
Beyond Einstein program The Beyond Einstein program is a NASA project designed to explore the limits of General theory of Relativity of Albert Einstein. The project includes two space observatories, and several observational cosmology probes. The program culminates wit ...
– NASA *
Big Bang Observer The Big Bang Observer (BBO) is a proposed successor to the Laser Interferometer Space Antenna (LISA) by the European Space Agency. The primary scientific goal is the observation of gravitational waves from the time shortly after the Big Bang, b ...
– proposed LISA successor *
Cosmic Vision Cosmic Vision is the third campaign of space science and space exploration missions in the Science Programme of the European Space Agency (ESA). Formulated in 2005 as ''Cosmic Vision: Space Science for Europe 2015–2025'', the campaign succee ...
program – ESA *
DECIGO The DECi-hertz Interferometer Gravitational wave Observatory (or DECIGO) is a proposed Japanese, space-based, gravitational wave observatory. The laser interferometric gravitational wave detector is so named because it is to be most sensitive in ...
– proposed Japanese space based gravitational wave observatory


References


External links

* * * * * {{Portal bar, Physics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Interferometric gravitational-wave instruments European Space Agency space probes Space telescopes Proposed space probes Future spaceflights 2037 in science Cosmic Vision Space-based laser CERN experiments