Euclidean Space
   HOME

TheInfoList



OR:

Euclidean space is the fundamental space of geometry, intended to represent
physical space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually conside ...
. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, but in modern mathematics there are Euclidean spaces of any positive integer
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
, including the three-dimensional space and the '' Euclidean plane'' (dimension two). The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics. Ancient Greek geometers introduced Euclidean space for modeling the physical space. Their work was collected by the ancient Greek mathematician Euclid in his ''Elements'', with the great innovation of '' proving'' all properties of the space as theorems, by starting from a few fundamental properties, called ''
postulate An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s'', which either were considered as evident (for example, there is exactly one
straight line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segmen ...
passing through two points), or seemed impossible to prove (
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
). After the introduction at the end of 19th century of
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
, the old postulates were re-formalized to define Euclidean spaces through axiomatic theory. Another definition of Euclidean spaces by means of vector spaces and linear algebra has been shown to be equivalent to the axiomatic definition. It is this definition that is more commonly used in modern mathematics, and detailed in this article. In all definitions, Euclidean spaces consist of points, which are defined only by the properties that they must have for forming a Euclidean space. There is essentially only one Euclidean space of each dimension; that is, all Euclidean spaces of a given dimension are isomorphic. Therefore, in many cases, it is possible to work with a specific Euclidean space, which is generally the real -space \R^n, equipped with the dot product. An isomorphism from a Euclidean space to \R^n associates with each point an -tuple of real numbers which locate that point in the Euclidean space and are called the '' Cartesian coordinates'' of that point.


Definition


History of the definition

Euclidean space was introduced by ancient Greeks as an abstraction of our physical space. Their great innovation, appearing in Euclid's ''Elements'' was to build and '' prove'' all geometry by starting from a few very basic properties, which are abstracted from the physical world, and cannot be mathematically proved because of the lack of more basic tools. These properties are called
postulate An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, or axioms in modern language. This way of defining Euclidean space is still in use under the name of
synthetic geometry Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is the study of geometry without the use of coordinates or formulae. It relies on the axiomatic method and the tools directly related to them, that is, compass ...
. In 1637, René Descartes introduced Cartesian coordinates and showed that this allows reducing geometric problems to algebraic computations with numbers. This reduction of geometry to algebra was a major change in point of view, as, until then, the real numbers were defined in terms of lengths and distances. Euclidean geometry was not applied in spaces of dimension more than three until the 19th century.
Ludwig Schläfli Ludwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional space ...
generalized Euclidean geometry to spaces of dimension , using both synthetic and algebraic methods, and discovered all of the regular
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s (higher-dimensional analogues of the Platonic solids) that exist in Euclidean spaces of any dimension. Despite the wide use of Descartes' approach, which was called analytic geometry, the definition of Euclidean space remained unchanged until the end of 19th century. The introduction of abstract vector spaces allowed their use in defining Euclidean spaces with a purely algebraic definition. This new definition has been shown to be equivalent to the classical definition in terms of geometric axioms. It is this algebraic definition that is now most often used for introducing Euclidean spaces.


Motivation of the modern definition

One way to think of the Euclidean plane is as a set of points satisfying certain relationships, expressible in terms of distance and angles. For example, there are two fundamental operations (referred to as
motions In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and me ...
) on the plane. One is translation, which means a shifting of the plane so that every point is shifted in the same direction and by the same distance. The other is rotation around a fixed point in the plane, in which all points in the plane turn around that fixed point through the same angle. One of the basic tenets of Euclidean geometry is that two figures (usually considered as subsets) of the plane should be considered equivalent (
congruent Congruence may refer to: Mathematics * Congruence (geometry), being the same size and shape * Congruence or congruence relation, in abstract algebra, an equivalence relation on an algebraic structure that is compatible with the structure * In mod ...
) if one can be transformed into the other by some sequence of translations, rotations and
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
s (see below). In order to make all of this mathematically precise, the theory must clearly define what is a Euclidean space, and the related notions of distance, angle, translation, and rotation. Even when used in physical theories, Euclidean space is an abstraction detached from actual physical locations, specific reference frames, measurement instruments, and so on. A purely mathematical definition of Euclidean space also ignores questions of units of length and other physical dimensions: the distance in a "mathematical" space is a
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
, not something expressed in inches or metres. The standard way to mathematically define a Euclidean space, as carried out in the remainder of this article, is as a set of points on which a
real vector space Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
acts The Acts of the Apostles ( grc-koi, Πράξεις Ἀποστόλων, ''Práxeis Apostólōn''; la, Actūs Apostolōrum) is the fifth book of the New Testament; it tells of the founding of the Christian Church and the spread of its message ...
, the ''space of translations'' which is equipped with an inner product. The action of translations makes the space an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, and this allows defining lines, planes, subspaces, dimension, and parallelism. The inner product allows defining distance and angles. The set \R^n of -tuples of real numbers equipped with the dot product is a Euclidean space of dimension . Conversely, the choice of a point called the ''origin'' and an orthonormal basis of the space of translations is equivalent with defining an isomorphism between a Euclidean space of dimension and \R^n viewed as a Euclidean space. It follows that everything that can be said about a Euclidean space can also be said about \R^n. Therefore, many authors, especially at elementary level, call \R^n the ''standard Euclidean space'' of dimension , or simply ''the'' Euclidean space of dimension . A reason for introducing such an abstract definition of Euclidean spaces, and for working with it instead of \R^n is that it is often preferable to work in a ''coordinate-free'' and ''origin-free'' manner (that is, without choosing a preferred basis and a preferred origin). Another reason is that there is no origin nor any basis in the physical world.


Technical definition

A is a finite-dimensional inner product space over the real numbers. A Euclidean space is an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
over the reals such that the associated vector space is a Euclidean vector space. Euclidean spaces are sometimes called ''Euclidean affine spaces'' for distinguishing them from Euclidean vector spaces. If is a Euclidean space, its associated vector space (Euclidean vector space) is often denoted \overrightarrow E. The ''dimension'' of a Euclidean space is the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
of its associated vector space. The elements of are called ''points'' and are commonly denoted by capital letters. The elements of \overrightarrow E are called '' Euclidean vectors'' or ''
free vector In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors a ...
s''. They are also called ''translations'', although, properly speaking, a translation is the
geometric transformation In mathematics, a geometric transformation is any bijection of a set to itself (or to another such set) with some salient geometrical underpinning. More specifically, it is a function whose domain and range are sets of points — most often b ...
resulting of the
action Action may refer to: * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video game Film * Action film, a genre of film * ''Action'' (1921 film), a film by John Ford * ''Action'' (1980 fil ...
of a Euclidean vector on the Euclidean space. The action of a translation on a point provides a point that is denoted . This action satisfies P+(v+w)= (P+v)+w. Note: The second in the left-hand side is a vector addition; all other denote an action of a vector on a point. This notation is not ambiguous, as, for distinguishing between the two meanings of , it suffices to look on the nature of its left argument. The fact that the action is free and transitive means that for every pair of points there is exactly one
displacement vector In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. It quantifies both the distance and direction of the net or total motion along a ...
such that . This vector is denoted or \overrightarrow . As previously explained, some of the basic properties of Euclidean spaces result of the structure of affine space. They are described in and its subsections. The properties resulting from the inner product are explained in and its subsections.


Prototypical examples

For any vector space, the addition acts freely and transitively on the vector space itself. Thus a Euclidean vector space can be viewed as a Euclidean space that has itself as the associated vector space. A typical case of Euclidean vector space is \R^n viewed as a vector space equipped with the dot product as an inner product. The importance of this particular example of Euclidean space lies in the fact that every Euclidean space is isomorphic to it. More precisely, given a Euclidean space of dimension , the choice of a point, called an ''origin'' and an orthonormal basis of \overrightarrow E defines an isomorphism of Euclidean spaces from to \R^n. As every Euclidean space of dimension is isomorphic to it, the Euclidean space \R^n is sometimes called the ''standard Euclidean space'' of dimension .


Affine structure

Some basic properties of Euclidean spaces depend only of the fact that a Euclidean space is an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
. They are called affine properties and include the concepts of lines, subspaces, and parallelism, which are detailed in next subsections.


Subspaces

Let be a Euclidean space and \overrightarrow E its associated vector space. A ''flat'', ''Euclidean subspace'' or ''affine subspace'' of is a subset of such that \overrightarrow F = \left\ as the associated vector space of is a linear subspace (vector subspace) of \overrightarrow E. A Euclidean subspace is a Euclidean space with \overrightarrow F as the associated vector space. This linear subspace \overrightarrow F is also called the ''direction'' of . If is a point of then F = \left\. Conversely, if is a point of and \overrightarrow V is a linear subspace of \overrightarrow E, then P + V = \left\ is a Euclidean subspace of direction \overrightarrow V. (The associated vector space of this subspace is \overrightarrow V.) A Euclidean vector space \overrightarrow E (that is, a Euclidean space that is equal to \overrightarrow E) has two sorts of subspaces: its Euclidean subspaces and its linear subspaces. Linear subspaces are Euclidean subspaces and a Euclidean subspace is a linear subspace if and only if it contains the zero vector.


Lines and segments

In a Euclidean space, a ''line'' is a Euclidean subspace of dimension one. Since a vector space of dimension one is spanned by any nonzero vector, a line is a set of the form \left\, where and are two distinct points of the Euclidean space as a part of the line. It follows that ''there is exactly one line that passes through (contains) two distinct points.'' This implies that two distinct lines intersect in at most one point. A more symmetric representation of the line passing through and is \left\, where is an arbitrary point (not necessary on the line). In a Euclidean vector space, the zero vector is usually chosen for ; this allows simplifying the preceding formula into \left\. A standard convention allows using this formula in every Euclidean space, see . The '' line segment'', or simply ''segment'', joining the points and is the subset of points such that in the preceding formulas. It is denoted or ; that is PQ = QP = \left\.


Parallelism

Two subspaces and of the same dimension in a Euclidean space are ''parallel'' if they have the same direction (i.e., the same associated vector space). Equivalently, they are parallel, if there is a translation vector that maps one to the other: T= S+v. Given a point and a subspace , there exists exactly one subspace that contains and is parallel to , which is P + \overrightarrow S. In the case where is a line (subspace of dimension one), this property is
Playfair's axiom In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid (the parallel postulate): ''In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the ...
. It follows that in a Euclidean plane, two lines either meet in one point or are parallel. The concept of parallel subspaces has been extended to subspaces of different dimensions: two subspaces are parallel if the direction of one of them is contained in the direction to the other.


Metric structure

The vector space \overrightarrow E associated to a Euclidean space is an inner product space. This implies a
symmetric bilinear form In mathematics, a symmetric bilinear form on a vector space is a bilinear map from two copies of the vector space to the field of scalars such that the order of the two vectors does not affect the value of the map. In other words, it is a bilinea ...
\begin \overrightarrow E \times \overrightarrow E &\to \R\\ (x,y)&\mapsto \langle x,y \rangle \end that is positive definite (that is \langle x,x \rangle is always positive for ). The inner product of a Euclidean space is often called ''dot product'' and denoted . This is specially the case when a Cartesian coordinate system has been chosen, as, in this case, the inner product of two vectors is the dot product of their coordinate vectors. For this reason, and for historical reasons, the dot notation is more commonly used than the bracket notation for the inner product of Euclidean spaces. This article will follow this usage; that is \langle x,y \rangle will be denoted in the remainder of this article. The Euclidean norm of a vector is \, x\, = \sqrt . The inner product and the norm allows expressing and proving metric and
topological In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
properties of
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
. The next subsection describe the most fundamental ones. ''In these subsections,'' ''denotes an arbitrary Euclidean space, and \overrightarrow E denotes its vector space of translations.''


Distance and length

The ''distance'' (more precisely the ''Euclidean distance'') between two points of a Euclidean space is the norm of the translation vector that maps one point to the other; that is d(P,Q) = \Bigl\, \overrightarrow \vphantom\Bigr\, . The ''length'' of a segment is the distance between its endpoints ''P'' and ''Q''. It is often denoted , PQ, . The distance is a metric, as it is positive definite, symmetric, and satisfies the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
d(P,Q)\le d(P,R) + d(R, Q). Moreover, the equality is true if and only if a point belongs to the segment . This inequality means that the length of any edge of a triangle is smaller than the sum of the lengths of the other edges. This is the origin of the term ''triangle inequality''. With the Euclidean distance, every Euclidean space is a
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
.


Orthogonality

Two nonzero vectors and of \overrightarrow E (the associated vector space of a Euclidean space ) are ''perpendicular'' or ''orthogonal'' if their inner product is zero: u \cdot v =0 Two linear subspaces of \overrightarrow E are orthogonal if every nonzero vector of the first one is perpendicular to every nonzero vector of the second one. This implies that the intersection of the linear subspaces is reduced to the zero vector. Two lines, and more generally two Euclidean subspaces (A line can be considered as one Euclidean subspace.) are orthogonal if their directions (the associated vector spaces of the Euclidean subspaces) are orthogonal. Two orthogonal lines that intersect are said ''perpendicular''. Two segments and that share a common endpoint are ''perpendicular'' or ''form a right angle'' if the vectors \overrightarrow and \overrightarrow are orthogonal. If and form a right angle, one has , BC, ^2 = , AB, ^2 + , AC, ^2. This is the Pythagorean theorem. Its proof is easy in this context, as, expressing this in terms of the inner product, one has, using bilinearity and symmetry of the inner product: \begin , BC, ^2 &= \overrightarrow \cdot \overrightarrow \\ &=\left(\overrightarrow +\overrightarrow \right ) \cdot \left(\overrightarrow +\overrightarrow \right)\\ &=\overrightarrow \cdot \overrightarrow + \overrightarrow \cdot \overrightarrow -2 \overrightarrow \cdot \overrightarrow \\ &=\overrightarrow \cdot \overrightarrow + \overrightarrow \cdot\overrightarrow \\ &=, AB, ^2 + , AC, ^2. \end Here, \overrightarrow \cdot \overrightarrow = 0 is used since these two vectors are orthogonal.


Angle

The (non-oriented) ''angle'' between two nonzero vectors and in \overrightarrow E is \theta = \arccos\left(\frac\right) where is the principal value of the arccosine function. By Cauchy–Schwarz inequality, the argument of the arccosine is in the interval . Therefore is real, and (or if angles are measured in degrees). Angles are not useful in a Euclidean line, as they can be only 0 or . In an oriented Euclidean plane, one can define the ''oriented angle'' of two vectors. The oriented angle of two vectors and is then the opposite of the oriented angle of and . In this case, the angle of two vectors can have any value modulo an integer multiple of . In particular, a
reflex angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles a ...
equals the negative angle . The angle of two vectors does not change if they are multiplied by positive numbers. More precisely, if and are two vectors, and and are real numbers, then \operatorname(\lambda x, \mu y)= \begin \operatorname(x, y) \qquad\qquad \text \lambda \text \mu \text\\ \pi - \operatorname(x, y)\qquad \text. \end If , , and are three points in a Euclidean space, the angle of the segments and is the angle of the vectors \overrightarrow and \overrightarrow . As the multiplication of vectors by positive numbers do not change the angle, the angle of two half-lines with initial point can be defined: it is the angle of the segments and , where and are arbitrary points, one on each half-line. Although this is less used, one can define similarly the angle of segments or half-lines that do not share an initial point. The angle of two lines is defined as follows. If is the angle of two segments, one on each line, the angle of any two other segments, one on each line, is either or . One of these angles is in the interval , and the other being in . The ''non-oriented angle'' of the two lines is the one in the interval . In an oriented Euclidean plane, the ''oriented angle'' of two lines belongs to the interval .


Cartesian coordinates

Every Euclidean vector space has an orthonormal basis (in fact, infinitely many in dimension higher than one, and two in dimension one), that is a
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
(e_1, \dots, e_n) of unit vectors (\, e_i\, = 1) that are pairwise orthogonal (e_i\cdot e_j = 0 for ). More precisely, given any
basis Basis may refer to: Finance and accounting * Adjusted basis, the net cost of an asset after adjusting for various tax-related items *Basis point, 0.01%, often used in the context of interest rates * Basis trading, a trading strategy consisting ...
(b_1, \dots, b_n), the
Gram–Schmidt process In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process is a method for orthonormalizing a set of vectors in an inner product space, most commonly the Euclidean space equipped with the standard inner produ ...
computes an orthonormal basis such that, for every , the linear spans of (e_1, \dots, e_i) and (b_1, \dots, b_i) are equal. Given a Euclidean space , a ''Cartesian frame'' is a set of data consisting of an orthonormal basis of \overrightarrow E, and a point of , called the ''origin'' and often denoted . A Cartesian frame (O, e_1, \dots, e_n) allows defining Cartesian coordinates for both and \overrightarrow E in the following way. The Cartesian coordinates of a vector of \overrightarrow E are the coefficients of on the orthonormal basis e_1, \dots, e_n. For example, the Cartesian coordinates of a vector v on an orthonormal basis (e_1,e_2,e_3) (that may be named as (x,y,z) as a convention) in a 3-dimensional Euclidean space is (\alpha_1,\alpha_2,\alpha_3) if v = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3. As the basis is orthonormal, the -th coefficient \alpha_i is equal to the dot product v\cdot e_i. The Cartesian coordinates of a point of are the Cartesian coordinates of the vector \overrightarrow .


Other coordinates

As a Euclidean space is an
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, one can consider an
affine frame In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
on it, which is the same as a Euclidean frame, except that the basis is not required to be orthonormal. This define
affine coordinates In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, sometimes called ''skew coordinates'' for emphasizing that the basis vectors are not pairwise orthogonal. An affine basis of a Euclidean space of dimension is a set of points that are not contained in a hyperplane. An affine basis define
barycentric coordinates In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
for every point. Many other coordinates systems can be defined on a Euclidean space of dimension , in the following way. Let be a homeomorphism (or, more often, a
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two ...
) from a
dense Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
open subset of to an open subset of \R^n. The ''coordinates'' of a point of are the components of . The polar coordinate system (dimension 2) and the
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
and cylindrical coordinate systems (dimension 3) are defined this way. For points that are outside the domain of , coordinates may sometimes be defined as the limit of coordinates of neighbour points, but these coordinates may be not uniquely defined, and may be not continuous in the neighborhood of the point. For example, for the spherical coordinate system, the longitude is not defined at the pole, and on the
antimeridian The 180th meridian or antimeridian is the meridian 180° both east and west of the prime meridian in a geographical coordinate system. The longitude at this line can be given as either east or west. On Earth, these two meridians form a ...
, the longitude passes discontinuously from –180° to +180°. This way of defining coordinates extends easily to other mathematical structures, and in particular to manifolds.


Isometries

An isometry between two metric spaces is a bijection preserving the distance, that is d(f(x), f(y))= d(x,y). In the case of a Euclidean vector space, an isometry that maps the origin to the origin preserves the norm \, f(x)\, = \, x\, , since the norm of a vector is its distance from the zero vector. It preserves also the inner product f(x)\cdot f(y)=x\cdot y, since x \cdot y=\frac 1 2 \left(\, x+y\, ^2-\, x\, ^2-\, y\, ^2\right). An isometry of Euclidean vector spaces is a
linear isomorphism In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
. An isometry f\colon E\to F of Euclidean spaces defines an isometry \overrightarrow f \colon \overrightarrow E \to \overrightarrow F of the associated Euclidean vector spaces. This implies that two isometric Euclidean spaces have the same dimension. Conversely, if and are Euclidean spaces, , , and \overrightarrow f\colon \overrightarrow E\to \overrightarrow F is an isometry, then the map f\colon E\to F defined by f(P)=O' + \overrightarrow f\left(\overrightarrow\right) is an isometry of Euclidean spaces. It follows from the preceding results that an isometry of Euclidean spaces maps lines to lines, and, more generally Euclidean subspaces to Euclidean subspaces of the same dimension, and that the restriction of the isometry on these subspaces are isometries of these subspaces.


Isometry with prototypical examples

If is a Euclidean space, its associated vector space \overrightarrow E can be considered as a Euclidean space. Every point defines an isometry of Euclidean spaces P\mapsto \overrightarrow , which maps to the zero vector and has the identity as associated linear map. The inverse isometry is the map v\mapsto O+v. A Euclidean frame allows defining the map \begin E&\to \R^n\\ P&\mapsto \left(e_1\cdot \overrightarrow , \dots, e_n\cdot\overrightarrow \right), \end which is an isometry of Euclidean spaces. The inverse isometry is \begin \R^n&\to E \\ (x_1\dots, x_n)&\mapsto \left(O+x_1e_1+ \dots + x_ne_n\right). \end ''This means that, up to an isomorphism, there is exactly one Euclidean space of a given dimension.'' This justifies that many authors talk of \R^n as ''the'' Euclidean space of dimension .


Euclidean group

An isometry from a Euclidean space onto itself is called ''Euclidean isometry'', ''Euclidean transformation'' or ''rigid transformation''. The rigid transformations of a Euclidean space form a group (under
composition Composition or Compositions may refer to: Arts and literature *Composition (dance), practice and teaching of choreography *Composition (language), in literature and rhetoric, producing a work in spoken tradition and written discourse, to include v ...
), called the ''Euclidean group'' and often denoted of . The simplest Euclidean transformations are
translations Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transl ...
P \to P+v. They are in bijective correspondence with vectors. This is a reason for calling ''space of translations'' the vector space associated to a Euclidean space. The translations form a normal subgroup of the Euclidean group. A Euclidean isometry of a Euclidean space defines a linear isometry \overrightarrow f of the associated vector space (by ''linear isometry'', it is meant an isometry that is also a linear map) in the following way: denoting by the vector \overrightarrow , if is an arbitrary point of , one has \overrightarrow f(\overrightarrow )= f(P)-f(O). It is straightforward to prove that this is a linear map that does not depend from the choice of The map f \to \overrightarrow f is a
group homomorphism In mathematics, given two groups, (''G'', ∗) and (''H'', ·), a group homomorphism from (''G'', ∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) w ...
from the Euclidean group onto the group of linear isometries, called the orthogonal group. The kernel of this homomorphism is the translation group, showing that it is a normal subgroup of the Euclidean group. The isometries that fix a given point form the stabilizer subgroup of the Euclidean group with respect to . The restriction to this stabilizer of above group homomorphism is an isomorphism. So the isometries that fix a given point form a group isomorphic to the orthogonal group. Let be a point, an isometry, and the translation that maps to . The isometry g=t^\circ f fixes . So f= t\circ g, and ''the Euclidean group is the semidirect product of the translation group and the orthogonal group.'' The special orthogonal group is the normal subgroup of the orthogonal group that preserves handedness. It is a subgroup of index two of the orthogonal group. Its inverse image by the group homomorphism f \to \overrightarrow f is a normal subgroup of index two of the Euclidean group, which is called the ''special Euclidean group'' or the ''displacement group''. Its elements are called ''rigid motions'' or ''displacements''. Rigid motions include the identity, translations, rotations (the rigid motions that fix at least a point), and also screw motions. Typical examples of rigid transformations that are not rigid motions are
reflection Reflection or reflexion may refer to: Science and technology * Reflection (physics), a common wave phenomenon ** Specular reflection, reflection from a smooth surface *** Mirror image, a reflection in a mirror or in water ** Signal reflection, in ...
s, which are rigid transformations that fix a hyperplane and are not the identity. They are also the transformations consisting in changing the sign of one coordinate over some Euclidean frame. As the special Euclidean group is a subgroup of index two of the Euclidean group, given a reflection , every rigid transformation that is not a rigid motion is the product of and a rigid motion. A glide reflection is an example of a rigid transformation that is not a rigid motion or a reflection. All groups that have been considered in this section are Lie groups and
algebraic group In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Ma ...
s.


Topology

The Euclidean distance makes a Euclidean space a metric space, and thus a topological space. This topology is called the Euclidean topology. In the case of \mathbb R^n, this topology is also the product topology. The open sets are the subsets that contains an
open ball In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defi ...
around each of their points. In other words, open balls form a base of the topology. The topological dimension of a Euclidean space equals its dimension. This implies that Euclidean spaces of different dimensions are not homeomorphic. Moreover, the theorem of
invariance of domain Invariance of domain is a theorem in topology about homeomorphic subsets of Euclidean space \R^n. It states: :If U is an open subset of \R^n and f : U \rarr \R^n is an injective continuous map, then V := f(U) is open in \R^n and f is a homeomorph ...
asserts that a subset of a Euclidean space is open (for the
subspace topology In topology and related areas of mathematics, a subspace of a topological space ''X'' is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''X'' called the subspace topology (or the relative topology, or the induced to ...
) if and only if it is homeomorphic to an open subset of a Euclidean space of the same dimension. Euclidean spaces are complete and locally compact. That is, a closed subset of a Euclidean space is compact if it is bounded (that is, contained in a ball). In particular, closed balls are compact.


Axiomatic definitions

The definition of Euclidean spaces that has been described in this article differs fundamentally of Euclid's one. In reality, Euclid did not define formally the space, because it was thought as a description of the physical world that exists independently of human mind. The need of a formal definition appeared only at the end of 19th century, with the introduction of
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
. Two different approaches have been used.
Felix Klein Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and grou ...
suggested to define geometries through their symmetries. The presentation of Euclidean spaces given in this article, is essentially issued from his
Erlangen program In mathematics, the Erlangen program is a method of characterizing geometries based on group theory and projective geometry. It was published by Felix Klein in 1872 as ''Vergleichende Betrachtungen über neuere geometrische Forschungen.'' It is nam ...
, with the emphasis given on the groups of translations and isometries. On the other hand, David Hilbert proposed a set of
axioms An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
, inspired by Euclid's postulates. They belong to
synthetic geometry Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is the study of geometry without the use of coordinates or formulae. It relies on the axiomatic method and the tools directly related to them, that is, compass ...
, as they do not involve any definition of real numbers. Later G. D. Birkhoff and
Alfred Tarski Alfred Tarski (, born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician a ...
proposed simpler sets of axioms, which use real numbers (see Birkhoff's axioms and Tarski's axioms). In '' Geometric Algebra'', Emil Artin has proved that all these definitions of a Euclidean space are equivalent. It is rather easy to prove that all definitions of Euclidean spaces satisfy Hilbert's axioms, and that those involving real numbers (including the above given definition) are equivalent. The difficult part of Artin's proof is the following. In Hilbert's axioms, congruence is an equivalence relation on segments. One can thus define the ''length'' of a segment as its equivalence class. One must thus prove that this length satisfies properties that characterize nonnegative real numbers. Artin proved this with axioms equivalent to those of Hilbert.


Usage

Since ancient Greeks, Euclidean space is used for modeling shapes in the physical world. It is thus used in many
science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
s such as physics, mechanics, and astronomy. It is also widely used in all technical areas that are concerned with shapes, figure, location and position, such as
architecture Architecture is the art and technique of designing and building, as distinguished from the skills associated with construction. It is both the process and the product of sketching, conceiving, planning, designing, and constructing building ...
, geodesy, topography, navigation, industrial design, or technical drawing. Space of dimensions higher than three occurs in several modern theories of physics; see
Higher dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordin ...
. They occur also in configuration spaces of physical systems. Beside
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
, Euclidean spaces are also widely used in other areas of mathematics.
Tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
s of differentiable manifolds are Euclidean vector spaces. More generally, a manifold is a space that is locally approximated by Euclidean spaces. Most
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
can be modeled by a manifold, and embedded in a Euclidean space of higher dimension. For example, an
elliptic space Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines a ...
can be modeled by an ellipsoid. It is common to represent in a Euclidean space mathematical objects that are ''a priori'' not of a geometrical nature. An example among many is the usual representation of graphs.


Other geometric spaces

Since the introduction, at the end of 19th century, of
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
, many sorts of spaces have been considered, about which one can do geometric reasoning in the same way as with Euclidean spaces. In general, they share some properties with Euclidean spaces, but may also have properties that could appear as rather strange. Some of these spaces use Euclidean geometry for their definition, or can be modeled as subspaces of a Euclidean space of higher dimension. When such a space is defined by geometrical axioms,
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is g ...
the space in a Euclidean space is a standard way for proving
consistency In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent ...
of its definition, or, more precisely for proving that its theory is consistent, if
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry: the '' Elements''. Euclid's approach consists in assuming a small set of intuitively appealing axioms ...
is consistent (which cannot be proved).


Affine space

A Euclidean space is an affine space equipped with a metric. Affine spaces have many other uses in mathematics. In particular, as they are defined over any field, they allow doing geometry in other contexts. As soon as non-linear questions are considered, it is generally useful to consider affine spaces over the complex numbers as an extension of Euclidean spaces. For example, a circle and a line have always two intersection points (possibly not distinct) in the complex affine space. Therefore, most of algebraic geometry is built in complex affine spaces and affine spaces over algebraically closed fields. The shapes that are studied in algebraic geometry in these affine spaces are therefore called affine algebraic varieties. Affine spaces over the rational numbers and more generally over algebraic number fields provide a link between (algebraic) geometry and number theory. For example, the
Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers , , and satisfy the equation for any integer value of greater than 2. The cases and have been ...
can be stated "a
Fermat curve In mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (''X'':''Y'':''Z'') by the Fermat equation :X^n + Y^n = Z^n.\ Therefore, in terms of the affine plane its equation is :x^ ...
of degree higher than two has no point in the affine plane over the rationals." Geometry in affine spaces over a finite fields has also been widely studied. For example, elliptic curves over finite fields are widely used in cryptography.


Projective space

Originally, projective spaces have been introduced by adding "
points at infinity In geometry, a point at infinity or ideal point is an idealized limiting point at the "end" of each line. In the case of an affine plane (including the Euclidean plane), there is one ideal point for each pencil of parallel lines of the plane. Ad ...
" to Euclidean spaces, and, more generally to affine spaces, in order to make true the assertion "two
coplanar In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
lines meet in exactly one point". Projective space share with Euclidean and affine spaces the property of being isotropic, that is, there is no property of the space that allows distinguishing between two points or two lines. Therefore, a more isotropic definition is commonly used, which consists as defining a projective space as the set of the vector lines in a vector space of dimension one more. As for affine spaces, projective spaces are defined over any field, and are fundamental spaces of algebraic geometry.


Non-Euclidean geometries

''Non-Euclidean geometry'' refers usually to geometrical spaces where the
parallel postulate In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's ''Elements'', is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry: ''If a line segmen ...
is false. They include
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
, where the sum of the angles of a triangle is more than 180°, and
hyperbolic geometry In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P ...
, where this sum is less than 180°. Their introduction in the second half of 19th century, and the proof that their theory is
consistent In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent ...
(if Euclidean geometry is not contradictory) is one of the paradoxes that are at the origin of the
foundational crisis in mathematics Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathem ...
of the beginning of 20th century, and motivated the systematization of axiomatic theories in mathematics.


Curved spaces

A manifold is a space that in the neighborhood of each point resembles a Euclidean space. In technical terms, a manifold is a topological space, such that each point has a neighborhood that is homeomorphic to an open subset of a Euclidean space. Manifolds can be classified by increasing degree of this "resemblance" into
topological manifold In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real ''n''-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout math ...
s, differentiable manifolds,
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s, and
analytic manifold In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic ge ...
s. However, none of these types of "resemblance" respect distances and angles, even approximately. Distances and angles can be defined on a smooth manifold by providing a smoothly varying Euclidean metric on the
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
s at the points of the manifold (these tangent spaces are thus Euclidean vector spaces). This results in a Riemannian manifold. Generally,
straight line In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in two, three, or higher dimension spaces. The word ''line'' may also refer to a line segmen ...
s do not exist in a Riemannian manifold, but their role is played by geodesics, which are the "shortest paths" between two points. This allows defining distances, which are measured along geodesics, and angles between geodesics, which are the angle of their tangents in the tangent space at their intersection. So, Riemannian manifolds behave locally like a Euclidean space that has been bent. Euclidean spaces are trivially Riemannian manifolds. An example illustrating this well is the surface of a sphere. In this case, geodesics are arcs of great circle, which are called orthodromes in the context of navigation. More generally, the spaces of
non-Euclidean geometries In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean ge ...
can be realized as Riemannian manifolds.


Pseudo-Euclidean space

An inner product of a real vector space is a
positive definite bilinear form Positive is a property of positivity and may refer to: Mathematics and science * Positive formula, a logical formula not containing negation * Positive number, a number that is greater than 0 * Plus sign, the sign "+" used to indicate a posi ...
, and so characterized by a positive definite quadratic form. A pseudo-Euclidean space is an affine space with an associated real vector space equipped with a non-degenerate quadratic form (that may be indefinite). A fundamental example of such a space is the
Minkowski space In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the iner ...
, which is the space-time of Einstein's special relativity. It is a four-dimensional space, where the metric is defined by the quadratic form x^2+y^2+z^2-t^2, where the last coordinate (''t'') is temporal, and the other three (''x'', ''y'', ''z'') are spatial. To take gravity into account, general relativity uses a
pseudo-Riemannian manifold In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the ...
that has Minkowski spaces as
tangent space In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of '' tangent planes'' to surfaces in three dimensions and ''tangent lines'' to curves in two dimensions. In the context of physics the tangent space to a ...
s. The curvature of this manifold at a point is a function of the value of the gravitational field at this point.


See also

* Hilbert space, a generalization to infinite dimension, used in functional analysis


Footnotes


References

* * * * * * {{Authority control Euclidean geometry Linear algebra Homogeneous spaces Norms (mathematics)