Electrospray ionization mass spectrometry
   HOME

TheInfoList



OR:

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an
electrospray The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter (usually a glass or metallic capilla ...
in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes (e.g.
matrix-assisted laser desorption/ionization In mass spectrometry, matrix-assisted laser desorption/ionization (MALDI) is an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. It has been applied to the analysis of ...
(MALDI)) since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments. Mass spectrometry using ESI is called electrospray ionization mass spectrometry (ESI-MS) or, less commonly, electrospray mass spectrometry (ES-MS). ESI is a so-called 'soft ionization' technique, since there is very little fragmentation. This can be advantageous in the sense that the molecular ion (or more accurately a pseudo molecular ion) is almost always observed, however very little structural information can be gained from the simple mass spectrum obtained. This disadvantage can be overcome by coupling ESI with
tandem mass spectrometry Tandem mass spectrometry, also known as MS/MS or MS2, is a technique in instrumental analysis where two or more mass analyzers are coupled together using an additional reaction step to increase their abilities to analyse chemical samples. A com ...
(ESI-MS/MS). Another important advantage of ESI is that solution-phase information can be retained into the gas-phase. The electrospray ionization technique was first reported by Masamichi Yamashita and John Fenn in 1984, and independently by Lidia Gall and co-workers in Russia, also in 1984. Gall's work was not recognised or translated in the western scientific literature until a translation was published in 2008. The development of electrospray ionization for the analysis of biological macromolecules was rewarded with the attribution of the
Nobel Prize in Chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
to
John Bennett Fenn John Bennett Fenn (June 15, 1917December 10, 2010) was an American professor of analytical chemistry who was awarded a share of the Nobel Prize in Chemistry in 2002. Fenn shared half of the award with Koichi Tanaka for their work in mass spectro ...
in 2002. One of the original instruments used by Dr. Fenn is on display at the
Science History Institute The Science History Institute is an institution that preserves and promotes understanding of the history of science. Located in Philadelphia, Pennsylvania, it includes a library, museum, archive, research center and conference center. It was f ...
in Philadelphia, Pennsylvania.


History

In 1882,
Lord Rayleigh John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. Am ...
theoretically estimated the maximum amount of charge a liquid droplet could carry before throwing out fine jets of liquid. This is now known as the Rayleigh limit. In 1914,
John Zeleny John Zeleny (March 26, 1872 – June 19, 1951) was an American physicist who, in 1911, invented the Zeleny electroscope. He also studied the effect of an electric field on a liquid meniscus. His work is seen by some as a beginning to emergent te ...
published work on the behaviour of fluid droplets at the end of glass capillaries and presented evidence for different electrospray modes. Wilson and Taylor and Nolan investigated electrospray in the 1920s and Macky in 1931. The electrospray cone (now known as the
Taylor cone A Taylor cone refers to the cone observed in electrospinning, electrospraying and hydrodynamic spray processes from which a jet of charged particles emanates above a threshold voltage. Aside from electrospray ionization in mass spectrometry, the T ...
) was described by Sir
Geoffrey Ingram Taylor Sir Geoffrey Ingram Taylor OM FRS FRSE (7 March 1886 – 27 June 1975) was a British physicist and mathematician, and a major figure in fluid dynamics and wave theory. His biographer and one-time student, George Batchelor, described him as ...
. The first use of electrospray ionization with mass spectrometry was reported by
Malcolm Dole Malcolm Dole (March 4, 1903 – November 29, 1990) was an American chemist known for the Dole Effect in which he proved that the atomic weight of oxygen in air is greater than that of oxygen in water and for his work on electrospray ionizati ...
in 1968. John Bennett Fenn was awarded the 2002
Nobel Prize in Chemistry ) , image = Nobel Prize.png , alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then "M ...
for the development of electrospray ionization mass spectrometry in the late 1980s.


Ionization mechanism

The liquid containing the analytes of interest is dispersed by electrospray, into a fine aerosol. Because the ion formation involves extensive solvent evaporation (also termed desolvation), the typical solvents for electrospray ionization are prepared by mixing water with volatile organic compounds (e.g. methanol acetonitrile). To decrease the initial droplet size, compounds that increase the conductivity (e.g. acetic acid) are customarily added to the solution. These species also act to provide a source of protons to facilitate the ionization process. Large-flow electrosprays can benefit from nebulization of a heated inert gas such as
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
or carbon dioxide in addition to the high temperature of the ESI source. The aerosol is sampled into the first vacuum stage of a mass spectrometer through a capillary carrying a potential difference of approximately 3000V, which can be heated to aid further solvent evaporation from the charged droplets. The solvent evaporates from a charged droplet until it becomes unstable upon reaching its
Rayleigh limit Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. ...
. At this point, the droplet deforms as the electrostatic repulsion of like charges, in an ever-decreasing droplet size, becomes more powerful than the surface tension holding the droplet together. At this point the droplet undergoes Coulomb fission, whereby the original droplet 'explodes' creating many smaller, more stable droplets. The new droplets undergo desolvation and subsequently further Coulomb fissions. During the fission, the droplet loses a small percentage of its mass (1.0–2.3%) along with a relatively large percentage of its charge (10–18%). There are two major theories that explain the final production of gas-phase ions: the ion evaporation model (IEM) and the charge residue model (CRM). The IEM suggests that as the droplet reaches a certain radius the field strength at the surface of the droplet becomes large enough to assist the
field desorption Field desorption (FD) is a method of ion formation used in mass spectrometry (MS) in which a high-potential electric field is applied to an ''emitter'' with a sharp surface, such as a razor blade, or more commonly, a filament from which tiny "whis ...
of solvated ions. The CRM suggests that electrospray droplets undergo evaporation and fission cycles, eventually leading progeny droplets that contain on average one analyte ion or less. The gas-phase ions form after the remaining solvent molecules evaporate, leaving the analyte with the charges that the droplet carried. A large body of evidence shows either directly or indirectly that small ions (from
small molecule Within the fields of molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs ...
s) are liberated into the gas phase through the ion evaporation mechanism, while larger ions (from folded proteins for instance) form by charged residue mechanism. A third model invoking combined charged residue-field emission has been proposed. Another model called chain ejection model (CEM) is proposed for disordered polymers (unfolded proteins). The ions observed by mass spectrometry may be quasimolecular ions created by the addition of a
hydrogen cation In chemistry, the hydron, informally called proton, is the cationic form of atomic hydrogen, represented with the symbol . The general term "hydron", endorsed by the IUPAC, encompasses cations of hydrogen regardless of their isotopic composition: ...
and denoted ''M + Hsup>+, or of another cation such as
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
ion, ''M + Nasup>+, or the removal of a hydrogen nucleus, ''M − Hsup>−. Multiply charged ions such as ''M + ''n''Hsup>''n''+ are often observed. For large
macromolecules A macromolecule is a very large molecule important to biophysical processes, such as a protein or nucleic acid. It is composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The ...
, there can be many charge states, resulting in a characteristic charge state envelope. All these are even-electron ion species:
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s (alone) are not added or removed, unlike in some other ionization sources. The analytes are sometimes involved in electrochemical processes, leading to shifts of the corresponding peaks in the
mass spectrum A mass spectrum is a histogram plot of intensity vs. ''mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for example ...
. This effect is demonstrated in the direct ionization of noble metals such as copper, silver and gold using electrospray. The efficiency of generating the gas phase ions for small molecules in ESI varies depending on the compound structure, the solvent used and instrumental parameters. The differences in ionization efficiency reach more than 1 million times.


Variants

The electrosprays operated at low flow rates generate much smaller initial droplets, which ensure improved ionization efficiency. In 1993 Gale and Richard D. Smith reported significant sensitivity increases could be achieved using lower flow rates, and down to 200 nL/min. In 1994, two research groups coined the name micro-electrospray (microspray) for electrosprays working at low flow rates. Emmett and Caprioli demonstrated improved performance for HPLC-MS analyses when the electrospray was operated at 300–800 nL/min. Wilm and Mann demonstrated that a capillary flow of ~ 25 nL/min can sustain an electrospray at the tip of emitters fabricated by pulling glass capillaries to a few micrometers. The latter was renamed nano-electrospray (nanospray) in 1996. Currently the name nanospray is also in use for electrosprays fed by pumps at low flow rates, not only for self-fed electrosprays. Although there may not be a well-defined flow rate range for electrospray, microspray, and nano-electrospray, studied "changes in analyte partition during droplet fission prior to ion release". In this paper, they compare results obtained by three other groups. and then measure the signal intensity ratio at different flow rates. Cold spray ionization is a form of electrospray in which the solution containing the sample is forced through a small cold capillary (10–80 °C) into an electric field to create a fine mist of cold charged droplets. Applications of this method include the analysis of fragile molecules and guest-host interactions that cannot be studied using regular electrospray ionization. Electrospray ionization has also been achieved at pressures as low as 25 torr and termed subambient pressure ionization with nanoelectrospray (SPIN) based upon a two-stage ion funnel interface developed by Richard D. Smith and coworkers. The SPIN implementation provided increased sensitivity due to the use of ion funnels that helped confine and transfer ions to the lower pressure region of the mass spectrometer. Nanoelectrospray emitter is made out of a fine capillary with a small aperture about 1–3 micrometer. For sufficient conductivity this capillary is usually sputter-coated with conductive material, e.g. gold. Nanoelectrospray ionization consumes only a few microliters of a sample and forms smaller droplets. Operation at low pressure was particularly effective for low flow rates where the smaller electrospray droplet size allowed effective desolvation and ion formation to be achieved. As a result, the researchers were later able to demonstrate achieving an excess of 50% overall ionization utilization efficiency for transfer of ions from the liquid phase, into the gas phase as ions, and through the dual ion funnel interface to the mass spectrometer.


Ambient ionization

In
ambient ionization Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed a ...
, the formation of ions occurs outside the
mass spectrometer Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is us ...
without sample preparation. Electrospray is used for ion formation in a number of ambient ion sources.
Desorption electrospray ionization Desorption electrospray ionization (DESI) is an ambient ionization technique that can be coupled to mass spectrometry (MS) for chemical analysis of samples at atmospheric conditions. Coupled ionization sources-MS systems are popular in chemical a ...
(DESI) is an
ambient ionization Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed a ...
technique in which a solvent electrospray is directed at a sample. The electrospray is attracted to the surface by applying a voltage to the sample. Sample compounds are extracted into the solvent which is again aerosolized as highly charged droplets that evaporate to form highly charged ions. After ionization, the ions enter the atmospheric pressure interface of the mass spectrometer. DESI allows for ambient ionization of samples at atmospheric pressure, with little sample preparation. Extractive electrospray ionization is a spray-type, ambient ionization method that uses two merged sprays, one of which is generated by electrospray. Laser-based electrospray-based ambient ionization is a two-step process in which a pulsed laser is used to desorb or ablate material from a sample and the plume of material interacts with an electrospray to create ions. For ambient ionization, the sample material is deposited on a target near the electrospray. The laser desorbs or ablates material from the sample which is ejected from the surface and into the electrospray which produces highly charged ions. Examples are electrospray laser desorption ionization, matrix-assisted laser desorption electrospray ionization, and laser ablation electrospray ionization. Electrostatic spray ionization (ESTASI) involved the analysis of samples located on a flat or porous surface, or inside a microchannel. A droplet containing analytes is deposited on a sample area, to which a pulsed high voltage to is applied. When the electrostatic pressure is larger than the surface tension, droplets and ions are sprayed.
Secondary electrospray ionization Secondary electro-spray ionization (SESI) is an ambient ionization technique for the analysis of trace concentrations of vapors, where a nano-electrospray produces charging agents that collide with the analyte molecules directly in gas-phase. In t ...
(SESI) is an spray type, ambient ionization method where charging ions are produced by means of an electrospray. These ions then charge vapor molecules in the gas phase when colliding with them. In paper spray ionization, the sample is applied to a piece of paper, solvent is added, and a high voltage is applied to the paper, creating ions.


Applications

Electrospray is used to study
protein folding Protein folding is the physical process by which a protein chain is translated to its native three-dimensional structure, typically a "folded" conformation by which the protein becomes biologically functional. Via an expeditious and reproduc ...
.


Liquid chromatography–mass spectrometry

Electrospray ionization is the ion source of choice to couple
liquid chromatography In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent (gas or liquid) called the ''mobile phase'', which carries it through a system (a ...
with mass spectrometry (LC-MS). The analysis can be performed online, by feeding the liquid eluting from the LC column directly to an electrospray, or offline, by collecting fractions to be later analyzed in a classical nanoelectrospray-mass spectrometry setup. Among the numerous operating parameters in ESI-MS,for proteins, the electrospray voltage has been identified as an important parameter to consider in ESI LC/MS gradient elution. The effect of various solvent compositions (such as TFA or ammonium acetate, or supercharging reagents, or derivitizing groups) or spraying conditions on electrospray-LCMS spectra and/or nanoESI-MS spectra. have been studied.


Capillary electrophoresis-mass spectrometry (CE-MS)

Capillary electrophoresis-mass spectrometry was enabled by an ESI interface that was developed and patented by Richard D. Smith and coworkers at Pacific Northwest National Laboratory, and shown to have broad utility for the analysis of very small biological and chemical compound mixtures, and even extending to a single biological cell.


Noncovalent gas phase interactions

Electrospray ionization is also utilized in studying
noncovalent In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
gas phase interactions. The electrospray process is thought to be capable of transferring liquid-phase noncovalent complexes into the gas phase without disrupting the noncovalent interaction. Problems such as non specific interactions have been identified when studying ligand substrate complexes by ESI-MS or nanoESI-MS. An interesting example of this is studying the interactions between
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s and drugs which are inhibitors of the enzyme. Competition studies between STAT6 and inhibitors have used ESI as a way to screen for potential new drug candidates.


See also

*
Probe electrospray ionization Probe electrospray ionization (PESI) is an electrospray-based ambient ionization technique which is coupled with mass spectrometry for sample analysis. Unlike traditional mass spectrometry ion sources which must be maintained in a vacuum, ambient ...
* Laser ablation electrospray ionization *
Sonic spray ionization An ion source is a device that creates atomic and molecular ions. Ion sources are used to form ions for mass spectrometers, optical emission spectrometers, particle accelerators, ion implanters and ion engines. Electron ionization Elect ...


References


Further reading

* * * * *


External links


Electrospray Ionization Primer
National High Magnetic Field Laboratory * {{DEFAULTSORT:Electrospray Ionization Ion source