Electrophoretic mobility shift assay
   HOME

TheInfoList



OR:

An electrophoretic mobility shift assay (EMSA) or mobility shift electrophoresis, also referred as a gel shift assay, gel mobility shift assay, band shift assay, or gel retardation assay, is a common
affinity electrophoresis Affinity electrophoresis is a general name for many analytical methods used in biochemistry and biotechnology. Both qualitative and quantitative information may be obtained through affinity electrophoresis. The methods include the so-called elect ...
technique used to study protein–DNA or
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
RNA interactions. This procedure can determine if a protein or mixture of proteins is capable of binding to a given DNA or RNA sequence, and can sometimes indicate if more than one protein molecule is involved in the binding complex. Gel shift assays are often performed
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology a ...
concurrently with DNase footprinting,
primer extension Primer extension is a technique whereby the 5' ends of RNA can be mapped - that is, they can be sequenced and properly identified. Primer extension can be used to determine the start site of transcription (the end site cannot be determined by th ...
, and promoter-probe experiments when studying transcription initiation, DNA gang replication, DNA repair or RNA processing and maturation, as well as pre-mRNA splicing. Although precursors can be found in earlier literature, most current assays are based on methods described by Garner and Revzin and Fried and Crothers.


Principle

A mobility shift assay is electrophoretic separation of a protein–DNA or protein–RNA mixture on a
polyacrylamide Polyacrylamide (abbreviated as PAM) is a polymer with the formula (-CH2CHCONH2-). It has a linear-chain structure. PAM is highly water-absorbent, forming a soft gel when hydrated. In 2008, an estimated 750,000,000 kg were produced, mainly fo ...
or agarose gel for a short period (about 1.5-2 hr for a 15- to 20-cm gel). The speed at which different molecules (and combinations thereof) move through the gel is determined by their size and charge, and to a lesser extent, their shape (see
gel electrophoresis Gel electrophoresis is a method for separation and analysis of biomacromolecules ( DNA, RNA, proteins, etc.) and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size (IEF ...
). The control lane (DNA probe without protein present) will contain a single band corresponding to the unbound DNA or RNA fragment. However, assuming that the protein is capable of binding to the fragment, the lane with a protein that binds present will contain another band that represents the larger, less mobile complex of nucleic acid probe bound to protein which is 'shifted' up on the gel (since it has moved more slowly). Under the correct experimental conditions, the interaction between the DNA (or RNA) and protein is stabilized and the ratio of bound to unbound nucleic acid on the gel reflects the fraction of free and bound probe molecules as the binding reaction enters the gel. This stability is in part due to a "caging effect", in that the protein, surrounded by the gel matrix, is unable to diffuse away from the probe before they recombine. If the starting concentrations of protein and probe are known, and if the stoichiometry of the complex is known, the apparent affinity of the protein for the nucleic acid sequence may be determined. Unless the complex is very long lived under gel conditions, or dissociation during electrophoresis is taken into account, the number derived is an apparent Kd. If the protein concentration is not known but the complex stoichiometry is, the protein concentration can be determined by increasing the concentration of DNA probe until further increments do not increase the fraction of protein bound. By comparison with a set of standard dilutions of free probe run on the same gel, the number of moles of protein can be calculated.


Variants and additions

An antibody that recognizes the protein can be added to this mixture to create an even larger complex with a greater shift. This method is referred to as a ''supershift assay'', and is used to unambiguously identify a protein present in the protein – nucleic acid complex. Often, an extra lane is run with a competitor
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
to determine the most favorable binding sequence for the binding protein. The use of different oligonucleotides of defined sequence allows the identification of the precise binding site by competition (not shown in diagram). Variants of the competition assay are useful for measuring the specificity of binding and for measurement of association and dissociation kinetics. Thus, EMSA might also be used as part of a SELEX experiment to select for oligonucleotides that do actually bind a given protein. Once DNA-protein binding is determined ''in vitro'', a number of algorithms can narrow the search for identification of the transcription factor. Consensus sequence oligonucleotides for the transcription factor of interest will be able to compete for the binding, eliminating the shifted band, and must be confirmed by supershift. If the predicted consensus sequence fails to compete for binding, identification of the transcription factor may be aided by Multiplexed Competitor EMSA (MC-EMSA), whereby large sets of consensus sequences are multiplexed in each reaction, and where one set competes for binding, the individual consensus sequences from this set are run in a further reaction. For visualization purposes, the nucleic acid fragment is usually labelled with a
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consi ...
,
fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, ...
or
biotin Biotin (or vitamin B7) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. The name ''biotin'', bo ...
label. Standard
ethidium bromide Ethidium bromide (or homidium bromide, chloride salt homidium chloride) is an intercalating agent commonly used as a fluorescent tag ( nucleic acid stain) in molecular biology laboratories for techniques such as agarose gel electrophoresis. It ...
staining is less sensitive than these methods and can lack the sensitivity to detect the nucleic acid if small amounts of nucleic acid or single-stranded nucleic acid(s) are used in these experiments. When using a biotin label,
streptavidin Streptavidin is a 66.0 (tetramer) kDa protein purified from the bacterium '' Streptomyces avidinii''. Streptavidin homo-tetramers have an extraordinarily high affinity for biotin (also known as vitamin B7 or vitamin H). With a dissociation ...
conjugated to an enzyme such as horseradish peroxidase is used to detect the DNA fragment. While isotopic DNA labeling has little or no effect on protein binding affinity, use of non-isotopic labels including flurophores or biotin can alter the affinity and/or stoichiometry of the protein interaction of interest. Competition between fluorophore- or biotin-labeled probe and unlabeled DNA of the same sequence can be used to determine whether the label alters binding affinity or stoichiometry.


References


External links


Chemiluminescent Gel Shift Protocol
{{DEFAULTSORT:Electrophoretic Mobility Shift Assay Genetics techniques Molecular genetics Molecular biology Protein methods Proteomics Analytical chemistry Laboratory techniques Electrophoresis Biological techniques and tools