Electrochemical reactions
   HOME

TheInfoList



OR:

Electrochemistry is the branch of
physical chemistry Physical chemistry is the study of macroscopic and microscopic phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistica ...
concerned with the relationship between electrical potential difference, as a measurable and quantitative phenomenon, and identifiable
chemical change Chemical changes occur when a substance combines with another to form a new substance, called chemical synthesis or, alternatively, chemical decomposition into two or more different substances. These processes are called chemical reactions and, ...
, with the potential difference as an outcome of a particular chemical change, or vice versa. These reactions involve electrons moving via an electronically-conducting phase (typically an external electrical circuit, but not necessarily, as in
electroless plating Electroless plating, also known as chemical plating or autocatalytic plating, is a class of industrial chemical processes that create metal coatings on various materials by autocatalytic chemical reduction of metal cations in a liquid bath. This ...
) between electrodes separated by an ionically conducting and electronically insulating electrolyte (or ionic
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
in a
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Soluti ...
). When a chemical reaction is driven by an electrical potential difference, as in electrolysis, or if a potential difference results from a chemical reaction as in an electric battery or fuel cell, it is called an ''electrochemical'' reaction. Unlike in other chemical reactions, in electrochemical reactions electrons are not transferred directly between atoms, ions, or molecules, but via the aforementioned electronically-conducting circuit. This phenomenon is what distinguishes an electrochemical reaction from a conventional chemical reaction.


History


16th–18th century

Understanding of electrical matters began in the sixteenth century. During this century, the English scientist William Gilbert spent 17 years experimenting with magnetism and, to a lesser extent, electricity. For his work on magnets, Gilbert became known as the ''"Father of Magnetism."'' He discovered various methods for producing and strengthening magnets. In 1663, the
German German(s) may refer to: * Germany (of or related to) ** Germania (historical use) * Germans, citizens of Germany, people of German ancestry, or native speakers of the German language ** For citizens of Germany, see also German nationality law **Ge ...
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
Otto von Guericke created the first electric generator, which produced static electricity by applying friction in the machine. The generator was made of a large sulfur ball cast inside a glass globe, mounted on a shaft. The ball was rotated by means of a crank and an
electric spark An electric spark is an abrupt electrical discharge that occurs when a sufficiently high electric field creates an ionized, electrically conductive channel through a normally-insulating medium, often air or other gases or gas mixtures. Michael F ...
was produced when a pad was rubbed against the ball as it rotated. The globe could be removed and used as source for experiments with electricity. By the mid-18th century the French
chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe t ...
Charles François de Cisternay du Fay Charles François de Cisternay du Fay (14 September 1698 – 16 July 1739) was a French chemist and superintendent of the Jardin du Roi. He discovered the existence of two types of electricity and named them " vitreous" and " resinous" (later ...
had discovered two types of static electricity, and that like charges repel each other whilst unlike charges attract. Du Fay announced that electricity consisted of two fluids: ''"vitreous"'' (from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
for ''"glass"''), or positive, electricity; and ''"resinous,"'' or negative, electricity. This was the ''two-fluid theory'' of electricity, which was to be opposed by
Benjamin Franklin Benjamin Franklin ( April 17, 1790) was an American polymath who was active as a writer, scientist, inventor, statesman, diplomat, printer, publisher, and political philosopher. Encyclopædia Britannica, Wood, 2021 Among the leading inte ...
's ''one-fluid theory'' later in the century. In 1785,
Charles-Augustin de Coulomb Charles-Augustin de Coulomb (; ; 14 June 1736 – 23 August 1806) was a French officer, engineer, and physicist. He is best known as the eponymous discoverer of what is now called Coulomb's law, the description of the electrostatic force of attra ...
developed the law of
electrostatic Electrostatics is a branch of physics that studies electric charges at rest ( static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amb ...
attraction as an outgrowth of his attempt to investigate the law of electrical repulsions as stated by
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, natural philosopher, separatist theologian, grammarian, multi-subject educator, and liberal political theorist. He published over 150 works, and conducted exp ...
in England. In the late 18th century the
Italian Italian(s) may refer to: * Anything of, from, or related to the people of Italy over the centuries ** Italians, an ethnic group or simply a citizen of the Italian Republic or Italian Kingdom ** Italian language, a Romance language *** Regional Ita ...
physician A physician (American English), medical practitioner (Commonwealth English), medical doctor, or simply doctor, is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through th ...
and
anatomist Anatomy () is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having it ...
Luigi Galvani marked the birth of electrochemistry by establishing a bridge between chemical reactions and electricity on his essay ''"De Viribus Electricitatis in Motu Musculari Commentarius"'' (Latin for Commentary on the Effect of Electricity on Muscular Motion) in 1791 where he proposed a ''"nerveo-electrical substance"'' on biological life forms.John Robert Norris, Douglas W. Ribbons (1972
Methods in microbiology, Volume 6
Academic Press. p. 248
In his essay Galvani concluded that animal tissue contained a here-to-fore neglected innate, vital force, which he termed ''"animal electricity,"'' which activated nerves and muscles spanned by metal probes. He believed that this new force was a form of electricity in addition to the ''"natural"'' form produced by
lightning Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions, both in the atmosphere or with one on the ground, temporarily neutralize themselves, causing the instantaneous release of an avera ...
or by the
electric eel The electric eels are a genus, ''Electrophorus'', of neotropical freshwater fish from South America in the family Gymnotidae. They are known for their ability to stun their prey by generating electricity, delivering shocks at up to 860 volt ...
and torpedo ray as well as the ''"artificial"'' form produced by
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of ...
(i.e., static electricity).Frederick Collier Bakewel
Electric science; its history, phenomena, and applications
Ingram, Cooke (1853) pp. 27–31
Galvani's scientific colleagues generally accepted his views, but Alessandro Volta rejected the idea of an ''"animal electric fluid,"'' replying that the frog's legs responded to differences in
metal temper Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature be ...
, composition, and bulk. Galvani refuted this by obtaining muscular action with two pieces of the same material. Nevertheless, Volta's experimentation led him to develop the first practical battery, which took advantage of the relatively high energy (weak bonding) of zinc and could deliver an electrical current for much longer than any other device known at the time.


19th century

In 1800, William Nicholson and Johann Wilhelm Ritter succeeded in decomposing water into
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
by electrolysis using Volta's battery. Soon thereafter Ritter discovered the process of electroplating. He also observed that the amount of metal deposited and the amount of oxygen produced during an electrolytic process depended on the distance between the
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s. By 1801, Ritter observed thermoelectric currents and anticipated the discovery of thermoelectricity by
Thomas Johann Seebeck Thomas Johann Seebeck (; 9 April 1770 – 10 December 1831) was a Baltic German physicist, who, in 1822, observed a relationship between heat and magnetism. Later, in 1823, Ørsted called this phenomenon thermoelectric effect. Seebeck was b ...
. By the 1810s,
William Hyde Wollaston William Hyde Wollaston (; 6 August 1766 – 22 December 1828) was an English chemist and physicist who is famous for discovering the chemical elements palladium and rhodium. He also developed a way to process platinum ore into malleable ingot ...
made improvements to the
galvanic cell A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus ...
. Sir
Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for t ...
's work with electrolysis led to the conclusion that the production of electricity in simple
electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electrod ...
s resulted from chemical action and that chemical combination occurred between substances of opposite charge. This work led directly to the isolation of metallic
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
by electrolysis of their molten salts, and of the
alkaline earth metal The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).. The elements have very similar properties: they are all ...
s from theirs, in 1808. Hans Christian Ørsted's discovery of the magnetic effect of electric currents in 1820 was immediately recognized as an epoch-making advance, although he left further work on
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of ...
to others. André-Marie Ampère quickly repeated Ørsted's experiment, and formulated them mathematically. In 1821, Estonian-German
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
Thomas Johann Seebeck Thomas Johann Seebeck (; 9 April 1770 – 10 December 1831) was a Baltic German physicist, who, in 1822, observed a relationship between heat and magnetism. Later, in 1823, Ørsted called this phenomenon thermoelectric effect. Seebeck was b ...
demonstrated the electrical potential between the juncture points of two dissimilar metals when there is a temperature difference between the joints.Brian Scott Baigri
Electricity and magnetism: a historical perspective
Greenwood Publishing Group (2007) p. 73
In 1827, the German scientist
Georg Ohm Georg Simon Ohm (, ; 16 March 1789 – 6 July 1854) was a German physicist and mathematician. As a school teacher, Ohm began his research with the new electrochemical cell, invented by Italian scientist Alessandro Volta. Using equipment of his o ...
expressed his
law Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior,Robertson, ''Crimes against humanity'', 90. with its precise definition a matter of longstanding debate. It has been vario ...
in this famous book ''"Die galvanische Kette, mathematisch bearbeitet"'' (The Galvanic Circuit Investigated Mathematically) in which he gave his complete theory of electricity. In 1832,
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
's experiments led him to state his two laws of electrochemistry. In 1836, John Daniell invented a primary cell which solved the problem of polarization by introducing copper ions into the solution near the positive electrode and thus eliminating
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
gas generation. Later results revealed that at the other electrode,
amalgam Amalgam most commonly refers to: * Amalgam (chemistry), mercury alloy * Amalgam (dentistry), material of silver tooth fillings ** Bonded amalgam, used in dentistry Amalgam may also refer to: * Amalgam Comics, a publisher * Amalgam Digital ...
ated
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
(i.e., zinc alloyed with mercury) would produce a higher voltage. William Grove produced the first fuel cell in 1839. In 1846, Wilhelm Weber developed the electrodynamometer. In 1868,
Georges Leclanché Georges Leclanché (October 9, 1839 – September 14, 1882) was a French electrical engineer chiefly remembered for his invention of the Leclanché cell, one of the first modern electrical batteries and the forerunner of the modern dry cell batter ...
patented a new cell which eventually became the forerunner to the world's first widely used battery, the zinc–carbon cell.Keith James Laidle
The world of physical chemistry
Oxford University Press (1995) pp. 219–220
Svante Arrhenius Svante August Arrhenius ( , ; 19 February 1859 – 2 October 1927) was a Swedish scientist. Originally a physicist, but often referred to as a chemist, Arrhenius was one of the founders of the science of physical chemistry. He received the Nob ...
published his thesis in 1884 on ''Recherches sur la conductibilité galvanique des électrolytes'' (Investigations on the galvanic conductivity of electrolytes). From his results the author concluded that electrolytes, when dissolved in water, become to varying degrees split or dissociated into electrically opposite positive and negative ions. In 1886,
Paul Héroult Paul (Louis-Toussaint) Héroult (10 April 1863 – 9 May 1914) was a French scientist. He was the inventor of the aluminium electrolysis and developed the first successful commercial electric arc furnace. He lived in Thury-Harcourt, Normandy. ...
and Charles M. Hall developed an efficient method (the
Hall–Héroult process The Hall–Héroult process is the major industrial process for smelting aluminium. It involves dissolving aluminium oxide (alumina) (obtained most often from bauxite, aluminium's chief ore, through the Bayer process) in molten cryolite, and el ...
) to obtain
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. I ...
using electrolysis of molten alumina. In 1894, Friedrich Ostwald concluded important studies of the
conductivity Conductivity may refer to: *Electrical conductivity, a measure of a material's ability to conduct an electric current **Conductivity (electrolytic), the electrical conductivity of an electrolyte in solution ** Ionic conductivity (solid state), ele ...
and electrolytic dissociation of organic acids. Walther Hermann Nernst developed the theory of the electromotive force of the voltaic cell in 1888. In 1889, he showed how the characteristics of the voltage produced could be used to calculate the free energy change in the chemical reaction producing the voltage. He constructed an equation, known as
Nernst equation In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction ( half-cell or full cell reaction) from the standard electrode potential, absolute tempe ...
, which related the voltage of a cell to its properties. In 1898,
Fritz Haber Fritz Haber (; 9 December 186829 January 1934) was a German chemist who received the Nobel Prize in Chemistry in 1918 for his invention of the Haber–Bosch process, a method used in industry to synthesize ammonia from nitrogen gas and hydroge ...
showed that definite reduction products can result from electrolytic processes if the potential at the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
is kept constant. In 1898, he explained the reduction of nitrobenzene in stages at the cathode and this became the model for other similar reduction processes.


20th century

In 1902,
The Electrochemical Society The Electrochemical Society is a learned society (professional association) based in the United States that supports scientific inquiry in the field of electrochemistry and solid-state science and related technology. The Society membership compri ...
(ECS) was founded. In 1909,
Robert Andrews Millikan Robert Andrews Millikan (March 22, 1868 – December 19, 1953) was an American experimental physicist honored with the Nobel Prize for Physics in 1923 for the measurement of the elementary electric charge and for his work on the photoelectric e ...
began a series of experiments (see
oil drop experiment The oil drop experiment was performed by Robert A. Millikan and Harvey Fletcher in 1909 to measure the elementary electric charge (the charge of the electron). The experiment took place in the Ryerson Physical Laboratory at the University of C ...
) to determine the electric charge carried by a single
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
. In 1911, Harvey Fletcher, working with Millikan, was successful in measuring the charge on the electron, by replacing the water droplets used by Millikan, which quickly evaporated, with oil droplets. Within one day Fletcher measured the charge of an electron within several decimal places In 1923,
Johannes Nicolaus Brønsted Johannes Nicolaus Brønsted (; 22 February 1879 – 17 December 1947) was a Danish physical chemist, who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Martin Lowry. Biography Brønsted was born in ...
and
Martin Lowry Thomas Martin Lowry (; 26 October 1874 – 2 November 1936) was an English physical chemist who developed the Brønsted–Lowry acid–base theory simultaneously with and independently of Johannes Nicolaus Brønsted and was a founder-member an ...
published essentially the same theory about how acids and bases behave, using an electrochemical basis. In 1937,
Arne Tiselius Arne Wilhelm Kaurin Tiselius (10 August 1902 – 29 October 1971) was a Swedish biochemist who won the Nobel Prize in Chemistry in 1948 "for his research on electrophoresis and adsorption analysis, especially for his discoveries concerning ...
developed the first sophisticated
electrophoretic Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fi ...
apparatus. Some years later, he was awarded the 1948
Nobel Prize The Nobel Prizes ( ; sv, Nobelpriset ; no, Nobelprisen ) are five separate prizes that, according to Alfred Nobel's will of 1895, are awarded to "those who, during the preceding year, have conferred the greatest benefit to humankind." Alfr ...
for his work in protein electrophoresis. A year later, in 1949, the
International Society of Electrochemistry The International Society of Electrochemistry (ISE) is a global scientific society founded in 1949. The Head Office of ISE is located now in Lausanne, Switzerland. ISE is a Member Organization of IUPAC. The Society has now more than 1900 Individual ...
(ISE) was founded. By the 1960s–1970s
quantum electrochemistry The scientific school of Quantum electrochemistry began to form in the 1960s under Revaz Dogonadze. Generally speaking, the field comprises the notions arising in electrodynamics, quantum mechanics, and electrochemistry; and so is studied by a very ...
was developed by
Revaz Dogonadze Revaz Dogonadze (November 21, 1931 – May 13, 1985) was a notable Georgian scientist, Corresponding Member of the Georgian National Academy of Sciences (GNAS) (1982), Doctor of Physical & Mathematical Sciences (Full Doctor) (1966), Professor (1972 ...
and his students.


Principles


Oxidation and reduction

The term "
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
" stands for reduction-oxidation. It refers to electrochemical processes involving
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
transfer to or from a
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
or
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
, changing its
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
. This reaction can occur through the application of an external
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
or through the release of chemical energy. Oxidation and reduction describe the change of oxidation state that takes place in the atoms, ions or molecules involved in an electrochemical reaction. Formally, oxidation state is the hypothetical
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
that an atom would have if all bonds to atoms of different elements were 100% ionic. An atom or ion that gives up an electron to another atom or ion has its oxidation state increase, and the recipient of the negatively charged electron has its oxidation state decrease. For example, when atomic
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
reacts with atomic
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
, sodium donates one electron and attains an oxidation state of +1. Chlorine accepts the electron and its oxidation state is reduced to −1. The sign of the oxidation state (positive/negative) actually corresponds to the value of each ion's electronic charge. The attraction of the differently charged sodium and chlorine ions is the reason they then form an
ionic bond Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds ...
. The loss of electrons from an atom or molecule is called oxidation, and the gain of electrons is reduction. This can be easily remembered through the use of
mnemonic A mnemonic ( ) device, or memory device, is any learning technique that aids information retention or retrieval (remembering) in the human memory for better understanding. Mnemonics make use of elaborative encoding, retrieval cues, and imag ...
devices. Two of the most popular are ''"OIL RIG"'' (Oxidation Is Loss, Reduction Is Gain) and ''"LEO"'' the lion says ''"GER"'' (Lose Electrons: Oxidation, Gain Electrons: Reduction). Oxidation and reduction always occur in a paired fashion such that one species is oxidized when another is reduced. For cases where electrons are shared (covalent bonds) between atoms with large differences in
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
, the electron is assigned to the atom with the largest electronegativity in determining the oxidation state. The atom or molecule which loses electrons is known as the ''
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth me ...
'', or ''reductant'', and the substance which accepts the electrons is called the ''
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
'', or ''oxidant''. Thus, the oxidizing agent is always being reduced in a reaction; the reducing agent is always being oxidized. Oxygen is a common oxidizing agent, but not the only one. Despite the name, an oxidation reaction does not necessarily need to involve oxygen. In fact, a
fire Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames a ...
can be fed by an oxidant other than oxygen; fluorine fires are often unquenchable, as fluorine is an even stronger oxidant (it has a weaker bond and higher
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
, and thus accepts electrons even better) than oxygen. For reactions involving oxygen, the gain of oxygen implies the oxidation of the atom or molecule to which the oxygen is added (and the oxygen is reduced). In organic compounds, such as butane or
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
, the loss of hydrogen implies oxidation of the molecule from which it is lost (and the hydrogen is reduced). This follows because the hydrogen donates its electron in covalent bonds with non-metals but it takes the electron along when it is lost. Conversely, loss of oxygen or gain of hydrogen implies reduction.


Balancing redox reactions

Electrochemical reactions in water are better analyzed by using the ion-electron method, where H+, OH ion, H2O and electrons (to compensate the oxidation changes) are added to the cell's
half-reaction A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. ...
s for oxidation and reduction.


Acidic medium

In acidic medium, H+ ions and water are added to balance each
half-reaction A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. ...
. For example, when
manganese Manganese is a chemical element with the symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese is a transition metal with a multifaceted array of industrial alloy use ...
reacts with
sodium bismuthate Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is on ...
. :''Unbalanced reaction'': Mn2+ + NaBiO3 → Bi3+ + :''Oxidation'': 4 H2O + Mn2+ → + 8 H+ + 5 e :''Reduction'': 2 e + 6 H+ + → Bi3+ + 3 H2O Finally, the reaction is balanced by multiplying the stoichiometric coefficients so the numbers of electrons in both half reactions match :8 H2O + 2 Mn2+ → 2 + 16 H+ + 10 e :10 e + 30 H+ + 5 → 5 Bi3+ + 15 H2O and adding the resulting half reactions to give the balanced reaction: :14 H+ + 2 Mn2+ + 5 NaBiO3 → 7 H2O + 2 + 5 Bi3+ + 5 Na+


Basic medium

In basic medium, OH ions and
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
are added to balance each half-reaction. For example, in a reaction between
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosph ...
and
sodium sulfite Sodium sulfite (sodium sulphite) is the inorganic compound with the chemical formula Na2 SO3. A white, water-soluble solid, it is used commercially as an antioxidant and preservative. A heptahydrate is also known but it is less useful because of ...
: :''Unbalanced reaction'': KMnO4 + Na2SO3 + H2O → MnO2 + Na2SO4 + KOH :''Reduction'': 3 e + 2 H2O + → MnO2 + 4 OH :''Oxidation'': 2 OH + → + H2O + 2 e Here, 'spectator ions' (K+, Na+) were omitted from the half-reactions. By multiplying the stoichiometric coefficients so the numbers of electrons in both half reaction match: :6 e + 4 H2O + 2 → 2 MnO2 + 8 OH :6 OH + 3 → 3 + 3 H2O + 6 e the balanced overall reaction is obtained: :2 KMnO4 + 3 Na2SO3 + H2O → 2 MnO2 + 3 Na2SO4 + 2 KOH


Neutral medium

The same procedure as used in acidic medium can be applied, for example, to balance the complete combustion of propane: :''Unbalanced reaction'': C3H8 + O2 → CO2 + H2O :''Reduction'': 4 H+ + O2 + 4 e → 2 H2O :''Oxidation'': 6 H2O + C3H8 → 3 CO2 + 20 e + 20 H+ By multiplying the stoichiometric coefficients so the numbers of electrons in both half reaction match: :20 H+ + 5 O2 + 20 e → 10 H2O :6 H2O + C3H8 → 3 CO2 + 20 e + 20 H+ the balanced equation is obtained: :C3H8 + 5 O2 → 3 CO2 + 4 H2O


Electrochemical cells

An electrochemical cell is a device that produces an electric current from energy released by a spontaneous redox reaction. This kind of cell includes the
Galvanic cell A galvanic cell or voltaic cell, named after the scientists Luigi Galvani and Alessandro Volta, respectively, is an electrochemical cell in which an electric current is generated from spontaneous Oxidation-Reduction reactions. A common apparatus ...
or Voltaic cell, named after Luigi Galvani and Alessandro Volta, both scientists who conducted experiments on chemical reactions and electric current during the late 18th century. Electrochemical cells have two conductive electrodes (the anode and the cathode). The
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
is defined as the electrode where oxidation occurs and the
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
is the electrode where the reduction takes place. Electrodes can be made from any sufficiently conductive materials, such as metals, semiconductors, graphite, and even
conductive polymer Conductive polymers or, more precisely, intrinsically conducting polymers (ICPs) are organic polymers that conduct electricity. Such compounds may have metallic conductivity or can be semiconductors. The biggest advantage of conductive polymers ...
s. In between these electrodes is the electrolyte, which contains ions that can freely move. The galvanic cell uses two different metal electrodes, each in an electrolyte where the positively charged ions are the oxidized form of the electrode metal. One electrode will undergo oxidation (the anode) and the other will undergo reduction (the cathode). The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state and become an ion. At the cathode, the metal ion in solution will accept one or more electrons from the cathode and the ion's oxidation state is reduced to 0. This forms a solid metal that electrodeposits on the cathode. The two electrodes must be electrically connected to each other, allowing for a flow of electrons that leave the metal of the anode and flow through this connection to the ions at the surface of the cathode. This flow of electrons is an electric current that can be used to do work, such as turn a motor or power a light. A galvanic cell whose
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s are
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
and
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
submerged in
zinc sulfate Zinc sulfate is an inorganic compound. It is used as a dietary supplement to treat zinc deficiency and to prevent the condition in those at high risk. Side effects of excess supplementation may include abdominal pain, vomiting, headache, and ti ...
and
copper sulfate Copper sulfate may refer to: * Copper(II) sulfate, CuSO4, a common compound used as a fungicide and herbicide * Copper(I) sulfate Copper(I) sulfate, also known as cuprous sulfate, is an inorganic compound with the chemical formula Cu2 SO4. It ...
, respectively, is known as a
Daniell cell The Daniell cell is a type of electrochemical cell invented in 1836 by John Frederic Daniell, a British chemist and meteorologist, and consists of a copper pot filled with a copper (II) sulfate solution, in which is immersed an unglazed earthenw ...
. The half reactions in a Daniell cell are as follows: :Zinc electrode (anode): Zn → Zn2+ + 2 e :Copper electrode (cathode): Cu2+ + 2 e → Cu In this example, the anode is the zinc metal which is oxidized (loses electrons) to form zinc ions in solution, and copper ions accept electrons from the copper metal electrode and the ions deposit at the copper cathode as an electrodeposit. This cell forms a simple battery as it will spontaneously generate a flow of electric current from the anode to the cathode through the external connection. This reaction can be driven in reverse by applying a voltage, resulting in the deposition of zinc metal at the anode and formation of copper ions at the cathode. To provide a complete electric circuit, there must also be an ionic conduction path between the anode and cathode electrolytes in addition to the electron conduction path. The simplest ionic conduction path is to provide a liquid junction. To avoid mixing between the two electrolytes, the liquid junction can be provided through a porous plug that allows ion flow while minimizing electrolyte mixing. To further minimize mixing of the electrolytes, a
salt bridge In electrochemistry, a salt bridge or ion bridge is a laboratory device used to connect the oxidation and reduction half-cells of a galvanic cell (voltaic cell), a type of electrochemical cell. It maintains electrical neutrality within the in ...
can be used which consists of an electrolyte saturated gel in an inverted U-tube. As the negatively charged electrons flow in one direction around this circuit, the positively charged metal ions flow in the opposite direction in the electrolyte. A
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. A ...
is capable of measuring the change of
electrical potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
between the anode and the cathode. The electrochemical cell voltage is also referred to as electromotive force or emf. A cell diagram can be used to trace the path of the electrons in the electrochemical cell. For example, here is a cell diagram of a Daniell cell: :Zn , Zn2+ (1 M) , , Cu2+ (1 M) , Cu First, the reduced form of the metal to be oxidized at the anode (Zn) is written. This is separated from its oxidized form by a vertical line, which represents the limit between the phases (oxidation changes). The double vertical lines represent the saline bridge on the cell. Finally, the oxidized form of the metal to be reduced at the cathode, is written, separated from its reduced form by the vertical line. The electrolyte concentration is given as it is an important variable in determining the exact cell potential.


Standard electrode potential

To allow prediction of the cell potential, tabulations of
standard electrode potential In electrochemistry, standard electrode potential E^\ominus, or E^\ominus_, is a measure of the reducing power of any element or compound. The IUPAC "Gold Book" defines it as: ''"the value of the standard emf (electromotive force) of a cell in wh ...
are available. Such tabulations are referenced to the standard hydrogen electrode (SHE). The
standard hydrogen electrode The standard hydrogen electrode (abbreviated SHE), is a redox electrode which forms the basis of the thermodynamic scale of oxidation-reduction potentials. Its absolute electrode potential is estimated to be at 25 °C, but to form a basis ...
undergoes the reaction :2 H+ + 2 e → H2 which is shown as a reduction but, in fact, the SHE can act as either the anode or the cathode, depending on the relative oxidation/reduction potential of the other electrode/electrolyte combination. The term standard in SHE requires a supply of hydrogen gas bubbled through the electrolyte at a pressure of 1 atm and an acidic electrolyte with H+ activity equal to 1 (usually assumed to be += 1 mol/liter, i.e. pH = 0). The SHE electrode can be connected to any other electrode by a salt bridge and an external circuit to form a cell. If the second electrode is also at standard conditions, then the measured cell potential is called the standard electrode potential for the electrode. The standard electrode potential for the SHE is zero, by definition. The polarity of the standard electrode potential provides information about the relative reduction potential of the electrode compared to the SHE. If the electrode has a positive potential with respect to the SHE, then that means it is a strongly reducing electrode which forces the SHE to be the anode (an example is Cu in aqueous CuSO4 with a standard electrode potential of 0.337 V). Conversely, if the measured potential is negative, the electrode is more oxidizing than the SHE (such as Zn in ZnSO4 where the standard electrode potential is −0.76 V).Wiberg, pp. 215–216 Standard electrode potentials are usually tabulated as reduction potentials. However, the reactions are reversible and the role of a particular electrode in a cell depends on the relative oxidation/reduction potential of both electrodes. The oxidation potential for a particular electrode is just the negative of the reduction potential. A standard cell potential can be determined by looking up the standard electrode potentials for both electrodes (sometimes called half cell potentials). The one that is smaller will be the anode and will undergo oxidation. The cell potential is then calculated as the sum of the reduction potential for the cathode and the oxidation potential for the anode. :''E''°cell = ''E''°red (cathode) – ''E''°red (anode) = ''E''°red (cathode) + ''E''°oxi (anode) For example, the standard electrode potential for a copper electrode is: ''Cell diagram'' :Pt , H2 (1 atm) , H+ (1 M) , , Cu2+ (1 M) , Cu :''E''°cell = ''E''°red (cathode) – ''E''°red (anode) At standard temperature, pressure and concentration conditions, the cell's emf (measured by a
multimeter A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case it is also known as a volt-ohm-milliammeter (VOM), as the unit is equipped w ...
) is 0.34 V. By definition, the electrode potential for the SHE is zero. Thus, the Cu is the cathode and the SHE is the anode giving :''E''cell = ''E''°(Cu2+/Cu) – ''E''°(H+/H2) Or, :''E''°(Cu2+/Cu) = 0.34 V Changes in the
stoichiometric coefficient A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas. The reactant entities are given on the left-hand side and the product entities on the right-hand side with a plus sign between ...
s of a balanced cell equation will not change the ''E''°red value because the standard electrode potential is an
intensive property Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one ...
.


Spontaneity of redox reaction

During operation of an
electrochemical cell An electrochemical cell is a device capable of either generating electrical energy from chemical reactions or using electrical energy to cause chemical reactions. The electrochemical cells which generate an electric current are called voltaic o ...
, chemical energy is transformed into electrical energy. This can be expressed mathematically as the product of the cell's emf ''E''cell measured in volts (V) and the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
''Q''ele,trans transferred through the external circuit. :Electrical energy = ''E''cell''Q''ele,trans ''Q''ele,trans is the cell current integrated over time and measured in coulombs (C); it can also be determined by multiplying the total number ''n''e of electrons transferred (measured in moles) times
Faraday's constant In physical chemistry, the Faraday constant, denoted by the symbol and sometimes stylized as ℱ, is the electric charge per mole of elementary charges. It is named after the English scientist Michael Faraday. Since the 2019 redefinition of ...
(''F''). The emf of the cell at zero current is the maximum possible emf. It can be used to calculate the maximum possible electrical energy that could be obtained from a
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
. This energy is referred to as
electrical work Electric field work is the work performed by an electric field on a charged particle in its vicinity. The particle located experiences an interaction with the electric field. The work per unit of charge is defined by moving a negligible test charg ...
and is expressed by the following equation: :W_\mathrm = W_\mathrm = -n_eFE_\mathrm , where work is defined as positive when it increases the energy of the system. Since the free energy is the maximum amount of work that can be extracted from a system, one can write:Swaddle, pp. 308–314 :\Delta G = -n_eFE_\mathrm A positive cell potential gives a negative change in Gibbs free energy. This is consistent with the cell production of an electric current from the cathode to the anode through the external circuit. If the current is driven in the opposite direction by imposing an external potential, then work is done on the cell to drive electrolysis. A spontaneous electrochemical reaction (change in Gibbs free energy less than zero) can be used to generate an electric current in electrochemical cells. This is the basis of all batteries and fuel cells. For example, gaseous oxygen (O2) and hydrogen (H2) can be combined in a fuel cell to form water and energy, typically a combination of heat and electrical energy. Conversely, non-spontaneous electrochemical reactions can be driven forward by the application of a current at sufficient
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
. The electrolysis of water into gaseous oxygen and hydrogen is a typical example. The relation between the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
, ''K'', and the Gibbs free energy for an electrochemical cell is expressed as follows: :\Delta G^\circ = -RT \ln K = -nFE^_\mathrm . Rearranging to express the relation between standard potential and equilibrium constant yields :E^_ = \frac\ln K. At ''T'' = 298 K, the previous equation can be rewritten using the Briggsian logarithm as follows: :E^_ = \frac \log K


Cell emf dependency on changes in concentration


Nernst equation

The standard potential of an electrochemical cell requires standard conditions (Δ''G''°) for all of the reactants. When reactant concentrations differ from standard conditions, the cell potential will deviate from the standard potential. In the 20th century German
chemist A chemist (from Greek ''chēm(ía)'' alchemy; replacing ''chymist'' from Medieval Latin ''alchemist'') is a scientist trained in the study of chemistry. Chemists study the composition of matter and its properties. Chemists carefully describe t ...
Walther Nernst proposed a mathematical model to determine the effect of reactant concentration on electrochemical cell potential. In the late 19th century,
Josiah Willard Gibbs Josiah Willard Gibbs (; February 11, 1839 – April 28, 1903) was an American scientist who made significant theoretical contributions to physics, chemistry, and mathematics. His work on the applications of thermodynamics was instrumental in t ...
had formulated a theory to predict whether a chemical reaction is spontaneous based on the free energy :\Delta G = \Delta G^\circ + RT \ln Q Here Δ''G'' is change in
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and ...
, Δ''G''° is the cell potential when ''Q'' is equal to 1, ''T'' is absolute
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measurement, measured with a thermometer. Thermometers are calibrated in various Conversion of units of temperature, temp ...
(Kelvin), ''R'' is the
gas constant The molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per ...
and ''Q'' is the
reaction quotient In chemical thermodynamics, the reaction quotient (''Q''r or just ''Q'') is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall ...
, which can be calculated by dividing concentrations of products by those of reactants, each raised to the power of its stoichiometric coefficient, using only those products and reactants that are aqueous or gaseous. Gibbs' key contribution was to formalize the understanding of the effect of reactant concentration on spontaneity. Based on Gibbs' work, Nernst extended the theory to include the contribution from electric potential on charged species. As shown in the previous section, the change in Gibbs free energy for an electrochemical cell can be related to the cell potential. Thus, Gibbs' theory becomes :n_eF\Delta E = n_e F\Delta E^\circ - RT \ln Q Here ''ne'' is the number of
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s (in
moles Moles can refer to: * Moles de Xert, a mountain range in the Baix Maestrat comarca, Valencian Community, Spain * The Moles (Australian band) *The Moles, alter ego of Scottish band Simon Dupree and the Big Sound People *Abraham Moles, French engin ...
), ''F'' is the
Faraday constant In physical chemistry, the Faraday constant, denoted by the symbol and sometimes stylized as ℱ, is the electric charge per mole of elementary charges. It is named after the English scientist Michael Faraday. Since the 2019 redefinition of ...
(in coulombs/
mole Mole (or Molé) may refer to: Animals * Mole (animal) or "true mole", mammals in the family Talpidae, found in Eurasia and North America * Golden moles, southern African mammals in the family Chrysochloridae, similar to but unrelated to Talpida ...
), and Δ''E'' is the cell potential (in volts). Finally, Nernst divided through by the amount of charge transferred to arrive at a new equation which now bears his name: :\Delta E = \Delta E^\circ - \frac \ln Q Assuming standard conditions (''T'' = 298 K or 25 °C) and ''R'' = 8.3145 J/(K·mol), the equation above can be expressed on base—10 logarithm as shown below:Wiberg, pp. 210–212 :\Delta E = \Delta E^\circ- \frac \log Q Note that ' is also known as the thermal voltage ''V''T and is found in the study of plasmas and semiconductors as well. The value 0.05916 V in the above equation is just the thermal voltage at standard temperature multiplied by the natural logarithm of 10.


Concentration cells

A concentration cell is an electrochemical cell where the two electrodes are the same material, the electrolytes on the two half-cells involve the same ions, but the electrolyte concentration differs between the two half-cells. An example is an electrochemical cell, where two copper electrodes are submerged in two
copper(II) sulfate Copper(II) sulfate, also known as copper sulphate, is an inorganic compound with the chemical formula . It forms hydrates , where ''n'' can range from 1 to 7. The pentahydrate (''n'' = 5), a bright blue crystal, is the most commonly encountered h ...
solutions, whose concentrations are 0.05 M and 2.0 M, connected through a salt bridge. This type of cell will generate a potential that can be predicted by the Nernst equation. Both can undergo the same chemistry (although the reaction proceeds in reverse at the anode) :Cu2+ + 2 e → Cu
Le Chatelier's principle Le Chatelier's principle (pronounced or ), also called Chatelier's principle (or the Equilibrium Law), is a principle of chemistry used to predict the effect of a change in conditions on chemical equilibria. The principle is named after French c ...
indicates that the reaction is more favorable to reduction as the concentration of Cu2+ ions increases. Reduction will take place in the cell's compartment where the concentration is higher and oxidation will occur on the more dilute side. The following cell diagram describes the concentration cell mentioned above: :Cu , Cu2+ (0.05 M) , , Cu2+ (2.0 M) , Cu where the half cell reactions for oxidation and reduction are: :Oxidation: Cu → Cu2+ (0.05 M) + 2 e :Reduction: Cu2+ (2.0 M) + 2 e → Cu :Overall reaction: Cu2+ (2.0 M) → Cu2+ (0.05 M) The cell's emf is calculated through the
Nernst equation In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction ( half-cell or full cell reaction) from the standard electrode potential, absolute tempe ...
as follows: :E = E^\circ - \frac \log \frac The value of ''E''° in this kind of cell is zero, as electrodes and ions are the same in both half-cells. After replacing values from the case mentioned, it is possible to calculate cell's potential: :E = 0 - \frac \log \frac = 0.0474\,\mathrm or by: :E = 0 - \frac \ln \frac= 0.0474\,\mathrm However, this value is only approximate, as reaction quotient is defined in terms of ion activities which can be approximated with the concentrations as calculated here. The Nernst equation plays an important role in understanding electrical effects in cells and organelles. Such effects include nerve synapses and cardiac beat as well as the resting potential of a somatic cell.


Battery

Many types of battery have been commercialized and represent an important practical application of electrochemistry. Early
wet cell An electric battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negat ...
s powered the first
telegraph Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas p ...
and
telephone A telephone is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into e ...
systems, and were the source of current for electroplating. The zinc-manganese dioxide dry cell was the first portable, non-spillable battery type that made flashlights and other portable devices practical. The mercury battery using zinc and mercuric oxide provided higher levels of power and capacity than the original dry cell for early electronic devices, but has been phased out of common use due to the danger of mercury pollution from discarded cells. The
lead–acid battery The lead–acid battery is a type of rechargeable battery first invented in 1859 by French physicist Gaston Planté. It is the first type of rechargeable battery ever created. Compared to modern rechargeable batteries, lead–acid batteries have ...
was the first practical secondary (rechargeable) battery that could have its capacity replenished from an external source. The electrochemical reaction that produced current was (to a useful degree) reversible, allowing electrical energy and chemical energy to be interchanged as needed. Common lead acid batteries contain a mixture of sulfuric acid and water, as well as lead plates. The most common mixture used today is 30% acid. One problem, however, is if left uncharged acid will crystallize within the lead plates of the battery rendering it useless. These batteries last an average of 3 years with daily use but it is not unheard of for a lead acid battery to still be functional after 7–10 years. Lead-acid cells continue to be widely used in automobiles. All the preceding types have water-based electrolytes, which limits the maximum voltage per cell. The freezing of water limits low temperature performance. The
lithium metal battery Lithium metal batteries are primary batteries that have metallic lithium as an anode. These types of batteries are also referred to as lithium-metal batteries after lithium-ion batteries had been invented. Most lithium metal batteries are non ...
, which does not (and cannot) use water in the electrolyte, provides improved performance over other types; a rechargeable
lithium-ion battery A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also s ...
is an essential part of many mobile devices. The
flow battery A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a ...
, an experimental type, offers the option of vastly larger energy capacity because its reactants can be replenished from external reservoirs. The fuel cell can turn the chemical energy bound in hydrocarbon gases or hydrogen and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
directly into electrical energy with a much higher efficiency than any combustion process; such devices have powered many spacecraft and are being applied to grid energy storage for the public power system.


Corrosion

Corrosion is an electrochemical process, which reveals itself as
rust Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO( ...
or tarnish on metals like
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
or
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
and their respective alloys, steel and
brass Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other wit ...
.


Iron corrosion

For iron rust to occur the metal has to be in contact with
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
and
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
. The
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s for this process are relatively complex and not all of them are completely understood. It is believed the causes are the following: Electron transfer (reduction-oxidation) :One area on the surface of the metal acts as the anode, which is where the oxidation (corrosion) occurs. At the anode, the metal gives up electrons. ::Fe → Fe2+ + 2 e :
Electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s are transferred from
iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
, reducing oxygen in the atmosphere into
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
on the cathode, which is placed in another region of the metal. ::O2 + 4 H+ + 4 e → 2 H2O :Global reaction for the process: ::2 Fe + O2 + 4 H+ → 2 Fe2+ + 2 H2O :Standard emf for iron rusting: ::''E''° = ''E''° (cathode) − ''E''° (anode) ::''E''° = 1.23V − (−0.44 V) = 1.67 V Iron corrosion takes place in an acid medium; H+
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
s come from reaction between
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is trans ...
in the atmosphere and water, forming carbonic acid. Fe2+ ions oxidize further, following this equation: : 4 Fe2+ + O2 + (4+2) H2O → 2 Fe2O3·H2O + 8 H+ Iron(III) oxide hydrate is known as rust. The concentration of water associated with iron oxide varies, thus the chemical formula is represented by Fe2O3·H2O. An
electric circuit An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, ...
is formed as passage of electrons and ions occurs; thus if an electrolyte is present it will facilitate
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
, explaining why rusting is quicker in
salt water Saline water (more commonly known as salt water) is water that contains a high concentration of dissolved salts (mainly sodium chloride). On the United States Geological Survey (USGS) salinity scale, saline water is saltier than brackish wat ...
.


Corrosion of common metals

Coinage metal The coinage metals comprise, at a minimum, those metallic chemical elements which have historically been used as components in alloys used to mint coins. The term is not perfectly defined, however, since a number of metals have been used to mak ...
s, such as copper and silver, slowly corrode through use. A patina of green-blue
copper carbonate Copper carbonate may refer to : ;Copper (II) compounds and minerals * Copper(II) carbonate proper, (neutral copper carbonate): a rarely seen moisture-sensitive compound. * Basic copper carbonate (the "copper carbonate" of commerce), actually a cop ...
forms on the surface of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
with exposure to the water and carbon dioxide in the air.
Silver Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical ...
coins or cutlery that are exposed to high sulfur foods such as
egg An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell (a zygote) and to incubate from it an embryo within the egg until the embryo has become an animal fetus that can survive on its own, at which point the a ...
s or the low levels of sulfur species in the air develop a layer of black silver sulfide.
Gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
and
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
are extremely difficult to oxidize under normal circumstances, and require exposure to a powerful chemical oxidizing agent such as aqua regia. Some common metals oxidize extremely rapidly in air.
Titanium Titanium is a chemical element with the Symbol (chemistry), symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resista ...
and aluminium oxidize instantaneously in contact with the oxygen in the air. These metals form an extremely thin layer of oxidized metal on the surface, which bonds with the underlying metal. This thin oxide layer protects the underlying bulk of the metal from the air preventing the entire metal from oxidizing. These metals are used in applications where corrosion resistance is important.
Iron Iron () is a chemical element with Symbol (chemistry), symbol Fe (from la, Wikt:ferrum, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 element, group 8 of the periodic table. It is, Abundanc ...
, in contrast, has an oxide that forms in air and water, called
rust Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO( ...
, that does not bond with the iron and therefore does not stop the further oxidation of the iron. Thus iron left exposed to air and water will continue to rust until all of the iron is oxidized.


Prevention of corrosion

Attempts to save a metal from becoming anodic are of two general types. Anodic regions dissolve and destroy the structural integrity of the metal. While it is almost impossible to prevent anode/
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
formation, if a non-conducting material covers the metal, contact with the electrolyte is not possible and corrosion will not occur.


Coating

Metals can be coated with paint or other less conductive metals ('' passivation''). This prevents the metal surface from being exposed to electrolytes. Scratches exposing the metal substrate will result in corrosion. The region under the coating adjacent to the scratch acts as the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
of the reaction. See
Anodizing Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts. The process is called ''anodizing'' because the part to be treated forms the anode electrode of an electr ...


Sacrificial anodes

A method commonly used to protect a structural metal is to attach a metal which is more anodic than the metal to be protected. This forces the structural metal to be
cathodic A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
, thus spared corrosion. It is called ''"sacrificial"'' because the anode dissolves and has to be replaced periodically.
Zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
bars are attached to various locations on steel
ship A ship is a large watercraft that travels the world's oceans and other sufficiently deep waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research, and fishing. Ships are generally distinguished ...
hulls to render the ship hull
cathodic A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
. The zinc bars are replaced periodically. Other metals, such as
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
, would work very well but zinc is the least expensive useful metal. To protect pipelines, an ingot of buried or exposed magnesium (or zinc) is buried beside the
pipeline Pipeline may refer to: Electronics, computers and computing * Pipeline (computing), a chain of data-processing stages or a CPU optimization found on ** Instruction pipelining, a technique for implementing instruction-level parallelism within a s ...
and is connected electrically to the pipe above ground. The pipeline is forced to be a cathode and is protected from being oxidized and rusting. The magnesium anode is sacrificed. At intervals new
ingot An ingot is a piece of relatively pure material, usually metal, that is cast into a shape suitable for further processing. In steelmaking, it is the first step among semi-finished casting products. Ingots usually require a second procedure of sha ...
s are buried to replace those dissolved.


Electrolysis

The spontaneous redox reactions of a conventional battery produce electricity through the different reduction potentials of the cathode and anode in the electrolyte. However, electrolysis requires an external source of electrical energy to induce a chemical reaction, and this process takes place in a compartment called an
electrolytic cell An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would not otherwise occur. The external energy source is a voltage applied between the cell′s two electrod ...
.


Electrolysis of molten sodium chloride

When molten, the salt sodium chloride can be electrolyzed to yield metallic
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
and gaseous
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
. Industrially this process takes place in a special cell named Down's cell. The cell is connected to an electrical power supply, allowing
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
s to migrate from the power supply to the electrolytic cell.Ebbing, pp. 800–801 Reactions that take place in a Down's cell are the following: :Anode (oxidation): 2 Cl → Cl2 + 2 e :Cathode (reduction): 2 Na+ + 2 e → 2 Na :Overall reaction: 2 Na+ + 2 Cl → 2 Na + Cl2 This process can yield large amounts of metallic sodium and gaseous chlorine, and is widely used in
mineral dressing In the field of extractive metallurgy, mineral processing, also known as ore dressing, is the process of separating commercially valuable minerals from their ores. History Before the advent of heavy machinery the raw ore was broken up using ...
and metallurgy industries. The emf for this process is approximately −4  V indicating a (very) non-spontaneous process. In order for this reaction to occur the power supply should provide at least a potential difference of 4 V. However, larger voltages must be used for this reaction to occur at a high rate.


Electrolysis of water

Water can be converted to its component elemental gases, H2 and O2, through the application of an external voltage.
Water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
does not decompose into
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
spontaneously as the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and ...
change for the process at standard conditions is very positive, about 474.4 kJ. The decomposition of water into hydrogen and oxygen can be performed in an electrolytic cell. In it, a pair of inert
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials d ...
s usually made of
platinum Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name originates from Spanish , a diminutive of "silver". Pla ...
immersed in water act as anode and cathode in the electrolytic process. The electrolysis starts with the application of an external voltage between the electrodes. This process will not occur except at extremely high voltages without an electrolyte such as sodium chloride or sulfuric acid (most used 0.1 M). Bubbles from the gases will be seen near both electrodes. The following half reactions describe the process mentioned above: :Anode (oxidation): 2 H2O → O2 + 4 H+ + 4 e :Cathode (reduction): 2 H2O + 2 e → H2 + 2 OH :Overall reaction: 2 H2O → 2 H2 + O2 Although strong acids may be used in the apparatus, the reaction will not net consume the acid. While this reaction will work at any conductive electrode at a sufficiently large potential, platinum catalyzes both hydrogen and oxygen formation, allowing for relatively low voltages (~2 V depending on the pH).Wiberg, pp. 235–239


Electrolysis of aqueous solutions

Electrolysis in an aqueous solution is a similar process as mentioned in electrolysis of water. However, it is considered to be a complex process because the contents in solution have to be analyzed in half reactions, whether reduced or oxidized.


Electrolysis of a solution of sodium chloride

The presence of water in a solution of sodium chloride must be examined in respect to its reduction and oxidation in both electrodes. Usually, water is electrolysed as mentioned above in electrolysis of water yielding ''gaseous
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
in the anode'' and gaseous
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
in the cathode. On the other hand, sodium chloride in water dissociates in Na+ and Cl ions. The cation, which is the positive ion, will be attracted to the cathode (−), thus reducing the
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
ion. The
chloride The chloride ion is the anion (negatively charged ion) Cl−. It is formed when the element chlorine (a halogen) gains an electron or when a compound such as hydrogen chloride is dissolved in water or other polar solvents. Chloride sa ...
anion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
will then be attracted to the anode (+), where it is oxidized to
chlorine gas Chlorine is a chemical element with the Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate betwee ...
.Ebbing, pp. 837–839 The following half reactions should be considered in the process mentioned: # Cathode: Na+ + e → Na''E''°red = –2.71 V # Anode: 2 Cl → Cl2 + 2 e''E''°red = +1.36 V # Cathode: 2 H2O + 2 e → H2 + 2 OH''E''°red = –0.83 V # Anode: 2 H2O → O2 + 4 H+ + 4 e''E''°red = +1.23 V Reaction 1 is discarded as it has the most negative value on standard reduction potential thus making it less thermodynamically favorable in the process. When comparing the reduction potentials in reactions 2 and 4, the reduction of chloride ion is favored. Thus, if the Cl ion is favored for reduction, then the water reaction is favored for
oxidation Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a ...
producing gaseous oxygen, however experiments show gaseous chlorine is produced and not oxygen. Although the initial analysis is correct, there is another effect, known as the overvoltage effect. Additional voltage is sometimes required, beyond the voltage predicted by the ''E''°cell. This may be due to kinetic rather than
thermodynamic Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
considerations. In fact, it has been proven that the
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
for the chloride ion is very low, hence favorable in kinetic terms. In other words, although the voltage applied is thermodynamically sufficient to drive electrolysis, the rate is so slow that to make the process proceed in a reasonable time frame, the
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to ...
of the external source has to be increased (hence, overvoltage). Finally, reaction 3 is favorable because it describes the proliferation of OH ions thus letting a probable reduction of H+ ions less favorable an option. The overall reaction for the process according to the analysis is the following: :Anode (oxidation): 2 Cl → Cl2 + 2 e :Cathode (reduction): 2 H2O + 2 e → H2 + 2 OH :Overall reaction: 2 H2O + 2 Cl → H2 + Cl2 + 2 OH As the overall reaction indicates, the
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', '' number concentration'', ...
of chloride ions is reduced in comparison to OH ions (whose concentration increases). The reaction also shows the production of gaseous
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
,
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine i ...
and aqueous sodium hydroxide.


Quantitative electrolysis and Faraday's laws

Quantitative aspects of electrolysis were originally developed by
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
in 1834. Faraday is also credited to have coined the terms '' electrolyte'', electrolysis, among many others while he studied quantitative analysis of electrochemical reactions. Also he was an advocate of the
law of conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means that ...
.


First law

Faraday concluded after several experiments on electric current in a non-spontaneous process that the
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
of the products yielded on the electrodes was proportional to the value of current supplied to the cell, the length of time the current existed, and the molar mass of the substance analyzed. In other words, the amount of a substance deposited on each electrode of an electrolytic cell is directly proportional to the quantity of electricity passed through the cell. Below is a simplified equation of Faraday's first law: :m = \frac \cdot \frac where :''m'' is the mass of the substance produced at the electrode (in
gram The gram (originally gramme; SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one one thousandth of a kilogram. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to th ...
s), :''Q'' is the total electric charge that passed through the solution (in coulombs), :''n'' is the valence number of the substance as an ion in solution (electrons per ion), :''M'' is the molar mass of the substance (in grams per
mole Mole (or Molé) may refer to: Animals * Mole (animal) or "true mole", mammals in the family Talpidae, found in Eurasia and North America * Golden moles, southern African mammals in the family Chrysochloridae, similar to but unrelated to Talpida ...
).


Second law

Faraday devised the laws of chemical electrodeposition of metals from solutions in 1857. He formulated the second law of electrolysis stating ''"the amounts of bodies which are equivalent to each other in their ordinary chemical action have equal quantities of electricity naturally associated with them."'' In other words, the quantities of different elements deposited by a given amount of electricity are in the
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of their chemical
equivalent weight In chemistry, equivalent weight (also known as gram equivalent) is the mass of one equivalent, that is the mass of a given substance which will combine with or displace a fixed quantity of another substance. The equivalent weight of an element is ...
s. An important aspect of the second law of electrolysis is electroplating, which together with the first law of electrolysis has a significant number of applications in industry, as when used to protectively coat
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s to avoid
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engi ...
.


Applications

There are various important electrochemical processes in both nature and industry, like the coating of objects with metals or metal oxides through electrodeposition, the addition ( electroplating) or removal (
electropolishing Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field), is an electrochemical process that removes material from a metallic workpiece, reducing the surface roug ...
) of thin layers of metal from an object's surface, and the detection of alcohol in drunk drivers through the redox reaction of ethanol. The generation of chemical energy through
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
is inherently an electrochemical process, as is production of metals like aluminum and titanium from their ores. Certain diabetes blood sugar meters measure the amount of glucose in the blood through its redox potential. In addition to established electrochemical technologies (like deep cycle lead acid batteries) there is also a wide range of new emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors and super-capacitors that are becoming increasingly commercial. Electrochemical or coulometric titrations were introduced for quantitative analysis of minute quantities in 1938 by the Hungarian chemists László Szebellédy and Zoltan Somogyi. Electrochemistry also has important applications in the food industry, like the assessment of food/package interactions, the analysis of milk composition, the characterization and the determination of the freezing end-point of
ice-cream Ice cream is a sweetened frozen food typically eaten as a snack or dessert. It may be made from milk or cream and is flavoured with a sweetener, either sugar or an alternative, and a spice, such as cocoa or vanilla, or with fruit such as ...
mixes, or the determination of free acidity in olive oil.


See also

*
Bioelectromagnetism Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the ...
*
Bioelectrochemistry Bioelectrochemistry is a branch of electrochemistry and biophysical chemistry concerned with electrophysiological topics like cell electron-proton transport, cell membrane potentials and electrode reactions of redox enzymes. History The beginni ...
* Bipolar electrochemistry * Contact tension – a historical forerunner to the theory of electrochemistry. *
Corrosion engineering Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to mana ...
*
Cyclic Voltammetry Cyclic voltammetry (CV) is a type of potentiodynamic electrochemical measurement. In a cyclic voltammetry experiment, the working electrode potential is ramped linearly versus time. Unlike in linear sweep voltammetry, after the set potential is r ...
*
Electrochemical impedance spectroscopy Dielectric spectroscopy (which falls in a subcategory of impedance spectroscopy) measures the dielectric properties of a medium as a function of frequency.Kremer F., Schonhals A., Luck W. Broadband Dielectric Spectroscopy. – Springer-Verlag, 200 ...
*
Electroanalytical methods Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into ...
*
Electrocatalyst An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst ...
*
Electrochemical potential In electrochemistry, the electrochemical potential (ECP), ', is a thermodynamic measure of chemical potential that does not omit the energy contribution of electrostatics. Electrochemical potential is expressed in the unit of J/ mol. Introductio ...
*
Electrochemiluminescence Electrochemiluminescence or electrogenerated chemiluminescence (ECL) is a kind of luminescence produced during electrochemical reactions in solutions. In electrogenerated chemiluminescence, electrochemically generated intermediates undergo a highl ...
*
Electrodeionization Electrodeionization (EDI) is a water treatment technology that utilizes electricity, ion exchange membranes, and resin to deionize water and separate dissolved ions (impurities) from it. It differs from other water purification technologies in ...
*
Electropolishing Electropolishing, also known as electrochemical polishing, anodic polishing, or electrolytic polishing (especially in the metallography field), is an electrochemical process that removes material from a metallic workpiece, reducing the surface roug ...
* Electroplating *
Electrochemical engineering Electrochemical engineering is the branch of chemical engineering dealing with the technological applications of electrochemical phenomena, such as electrosynthesis of chemicals, electrowinning and refining of metals, flow batteries and fuel cells, ...
* Electrochemical energy conversion *
Electrosynthesis Electrosynthesis in chemistry is the synthesis of chemical compounds in an electrochemical cell. Compared to ordinary redox reaction, electrosynthesis sometimes offers improved selectivity and yields. Electrosynthesis is actively studied as a scie ...
*
Frost diagram A Frost diagram or Frost–Ebsworth diagram is a type of graph used by inorganic chemists in electrochemistry to illustrate the relative stability of a number of different oxidation states of a particular substance. The graph illustrates the free ...
* Fuel cells *
ITIES In electrochemistry, ITIES (interface between two immiscible electrolyte solutions) is an electrochemical interface that is either polarisable or polarised. An ITIES is polarisable if one can change the Galvani potential difference, or in other wor ...
*
List of electrochemists {{Short description, none This is a list of electrochemists. Electrochemists * Alexander Frumkin * Faiza Al-Kharafi * John Alfred Valentine Butler * Hans Falkenhagen * Martin Fleischmann * Alexander Frumkin * Heinz Gerischer * Johann Wilhelm H ...
* Important publications in electrochemistry * Magnetoelectrochemistry *
Nanoelectrochemistry Nanoelectrochemistry is a branch of electrochemistry that investigates the electrical and electrochemical properties of materials at the nanometer size regime. Nanoelectrochemistry plays significant role in the fabrication of various sensors, and d ...
* Photoelectrochemistry * Plasma electrochemistry *
Pourbaix diagram In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, EH–pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (''i.e.'', at chemical equilibrium) ...
*
Protein film voltammetry In electrochemistry, protein film voltammetry (or protein film electrochemistry, or direct electrochemistry of proteins) is a technique for examining the behavior of proteins immobilized (either adsorbed or covalently attached) on an electrode. Th ...
*
Reactivity series In chemistry, a reactivity series (or activity series) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about th ...
*
Redox titration A redox titration is a type of titration based on a redox reaction between the analyte and titrant. It may involve the use of a redox indicator and/or a potentiometer. A common example of a redox titration is treating a solution of iodine with a ...
* Standard electrode potential (data page) *
Voltammetry Voltammetry is a category of electroanalytical methods used in analytical chemistry and various industrial processes. In voltammetry, information about an analyte is obtained by measuring the current as the potential is varied. The analytical data ...


References


Bibliography

*Ebbing, Darrell D. and Gammon, Steven D
General Chemistry
(2007) ,
Nobel Lectures in Chemistry
Volume 1, World Scientific (1999) *Swaddle, Thomas Wilso
Inorganic chemistry: an industrial and environmental perspective
Academic Press (1997) *Brett CMA, Brett AMO, ELECTROCHEMISTRY, Principles, methods, and applications, Oxford University Press, (1993) *Wiberg, Egon; Wiberg, Nils and Holleman, Arnold Frederic
Inorganic chemistry
Academic Press (2001)


External links

* * {{Use dmy dates, date=March 2017 Physical chemistry