Electro-optic modulator
   HOME

TheInfoList



OR:

An electro-optic modulator (EOM) is an optical device in which a signal-controlled element exhibiting an
electro-optic effect Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propag ...
is used to modulate a
beam of light ''Beam of Light'' is the second full-length album by the Japanese rock band One Ok Rock, released on May 28, 2008. It reached No. 17 on the Oricon weekly chart, and charted for six weeks before it dropped out. Track listing Notes * "Abducti ...
. The
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the '' carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informat ...
may be imposed on the phase,
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
,
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of am ...
, or polarization of the beam. Modulation bandwidths extending into the
gigahertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one he ...
range are possible with the use of
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The ...
-controlled modulators. The
electro-optic effect Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propag ...
is the change in the refractive index of a material resulting from the application of a DC or low-frequency electric field. This is caused by forces that distort the position, orientation, or shape of the molecules constituting the material. Generally, a nonlinear optical material (
organic polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
s have the fastest response rates, and thus are best for this application) with an incident static or low frequency
optical field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
will see a modulation of its
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
. The simplest kind of EOM consists of a crystal, such as
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
(LiNbO3), whose refractive index is a function of the strength of the local
electric field An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field ...
. That means that if
lithium niobate Lithium niobate () is a non-naturally-occurring salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linea ...
is exposed to an electric field, light will travel more slowly through it. But the phase of the light leaving the crystal is directly proportional to the length of time it takes that light to pass through it. Therefore, the phase of the laser light exiting an EOM can be controlled by changing the electric field in the crystal. Note that the electric field can be created by placing a parallel plate
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
across the crystal. Since the field inside a parallel plate capacitor depends
linearly Linearity is the property of a mathematical relationship (''function'') that can be graphically represented as a straight line. Linearity is closely related to '' proportionality''. Examples in physics include rectilinear motion, the linear re ...
on the potential, the index of refraction depends linearly on the field (for crystals where
Pockels effect The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known a ...
dominates), and the phase depends linearly on the index of refraction, the phase modulation must depend linearly on the potential applied to the EOM. The voltage required for inducing a phase change of \pi is called the half-wave voltage (V_\pi). For a
Pockels cell The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known as ...
, it is usually hundreds or even thousands of volts, so that a high-voltage amplifier is required. Suitable electronic circuits can switch such large voltages within a few nanoseconds, allowing the use of EOMs as fast optical switches. Liquid crystal devices are electro-optical phase modulators if no polarizers are used.


Phase modulation

Phase modulation (PM) is a modulation pattern that encodes information as variations in the instantaneous phase of a carrier wave. The phase of a carrier signal is modulated to follow the changing voltage level (amplitude) of modulation signal. The peak amplitude and frequency of the carrier signal remain constant, but as the amplitude of the information signal changes, the phase of the carrier changes correspondingly. The analysis and the final result (modulated signal) are similar to those of frequency modulation. A very common application of EOMs is for creating
sideband In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process. The sidebands carry the information transmitted by the radio signal. The sidebands ...
s in a
monochromatic A monochrome or monochromatic image, object or palette is composed of one color (or values of one color). Images using only shades of grey are called grayscale (typically digital) or black-and-white (typically analog). In physics, monochro ...
laser beam. To see how this works, first imagine that the strength of a laser beam with
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
\omega entering the EOM is given by :Ae^. Now suppose we apply a sinusoidally varying potential voltage to the EOM with frequency \Omega and small amplitude \beta. This adds a time dependent phase to the above expression, :Ae^. Since \beta is small, we can use the
Taylor expansion In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor seri ...
for the exponential :Ae^\left( 1+i\beta\sin(\Omega t)\right) , to which we apply a simple identity for
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opp ...
, :Ae^\left( 1 + \frac\left(e^ - e^\right)\right) = A\left( e^+\frace^-\frace^\right) . This expression we interpret to mean that we have the original
carrier signal In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an information-bearing signal for the purpose of conveying information. This carrier wave usually has ...
plus two small sidebands, one at \omega+\Omega and another at \omega-\Omega. Notice however that we only used the first term in the Taylor expansion – in truth there are an infinite number of sidebands. There is a useful identity involving
Bessel functions Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrar ...
called the Jacobi–Anger expansion which can be used to derive :Ae^ = Ae^\left( J_0(\beta) + \sum_^\infty J_k(\beta)e^ + \sum_^\infty (-1)^k J_k(\beta)e^\right) , which gives the amplitudes of all the sidebands. Notice that if one modulates the amplitude instead of the phase, one gets only the first set of sidebands, :\left( 1 + \beta\sin(\Omega t)\right) Ae^ = Ae^ + \frac\left( e^ - e^ \right) .


Amplitude modulation

A phase modulating EOM can also be used as an amplitude modulator by using a
Mach–Zehnder interferometer The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure p ...
. This alternative technique is often used in integrated optics where the requirements of phase stability is more easily achieved. The beam splitter divides the laser light into two paths, one of which has a phase modulator as described above. The beams are then recombined. Changing the electric field on the phase modulating path will then determine whether the two beams interfere constructively or destructively at the output, and thereby control the amplitude or intensity of the exiting light. This device is called a Mach–Zehnder modulator.


Polarization modulation

Depending on the type and orientation of the nonlinear crystal, and on the direction of the applied electric field, the phase delay can depend on the polarization direction. A
Pockels cell The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known as ...
can thus be seen as a voltage-controlled waveplate, and it can be used for modulating the polarization state. For a linear input polarization (often oriented at 45° to the crystal axis), the output polarization will in general be elliptical, rather than simply a linear polarization state with a rotated direction. Polarization modulation in electro-optic crystals can also be used as a technique for time-resolved measurement of unknown electric fields. Compared to conventional techniques using conductive field probes and cabling for signal transport to read-out systems, electro-optical measurement is inherently noise resistant as signals are carried by fiber-optics, preventing distortion of the signal by electrical noise sources. The polarization change measured by such techniques is linearly dependent on the electric field applied to the crystal, hence providing absolute measurements of the field, without the need for numerical integration of voltage traces, as is the case for conductive probes sensitive to the time-derivative of the electric field.


See also

*
Pockels effect The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known a ...
*
Acousto-optic modulator An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers ...
*
Phase modulation Phase modulation (PM) is a modulation pattern for conditioning communication signals for transmission. It encodes a message signal as variations in the instantaneous phase of a carrier wave. Phase modulation is one of the two principal forms of ...
*
Dielectric wireless receiver Dielectric wireless receiver is a type of radiofrequency receiver front-end featuring a complete absence of electronic circuitry and metal interconnects. It offers immunity against damage from intense electromagnetic radiation, produced by EMP and ...


References

* * *{{FS1037C MS188 ;Notes


External links


Encyclopedia of Laser Physics and Technology

Interactive visualization of the transfer characteristic of a Mach–Zehnder modulator for phase and amplitude modulation
Optical devices Nonlinear optics Optoelectronics