Eigenplane
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an eigenplane is a two-
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coord ...
al
invariant subspace In mathematics, an invariant subspace of a linear mapping ''T'' : ''V'' → ''V '' i.e. from some vector space ''V'' to itself, is a subspace ''W'' of ''V'' that is preserved by ''T''; that is, ''T''(''W'') ⊆ ''W''. General desc ...
in a given
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
. By analogy with the term ''
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
'' for a vector which, when operated on by a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vect ...
is another vector which is a scalar multiple of itself, the term ''eigenplane'' can be used to describe a two-dimensional plane (a ''2-plane''), such that the operation of a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vect ...
on a vector in the 2-plane always yields another vector in the same 2-plane. A particular case that has been studied is that in which the linear operator is an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' ...
''M'' of the
hypersphere In mathematics, an -sphere or a hypersphere is a topological space that is homeomorphic to a ''standard'' -''sphere'', which is the set of points in -dimensional Euclidean space that are situated at a constant distance from a fixed point, call ...
(written ''S3'') represented within four-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidea ...
: :M \; \mathbf \; \mathbf \; = \; \mathbf \; \mathbf{t} \Lambda_\theta where s and t are four-dimensional column vectors and Λθ is a two-dimensional eigenrotation within the eigenplane. In the usual
eigenvector In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
problem, there is freedom to multiply an eigenvector by an arbitrary scalar; in this case there is freedom to multiply by an arbitrary non-zero
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
. This case is potentially physically interesting in the case that the
shape of the universe The shape of the universe, in physical cosmology, is the local and global geometry of the universe. The local features of the geometry of the universe are primarily described by its curvature, whereas the topology of the universe describes ge ...
is a multiply connected
3-manifold In mathematics, a 3-manifold is a space that locally looks like Euclidean 3-dimensional space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds lo ...
, since finding the
angle In Euclidean geometry, an angle is the figure formed by two rays, called the '' sides'' of the angle, sharing a common endpoint, called the ''vertex'' of the angle. Angles formed by two rays lie in the plane that contains the rays. Angles ...
s of the eigenrotations of a candidate isometry for topological lensing is a way to
falsify Falsifiability is a standard of evaluation of scientific theories and hypotheses that was introduced by the philosopher of science Karl Popper in his book '' The Logic of Scientific Discovery'' (1934). He proposed it as the cornerstone of a so ...
such hypotheses.


See also

*
Bivector In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector ca ...
*
Plane of rotation In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space. In three dimensions it is an alternative to the axis of rotation, but unlike the axis of rotation it can be used in other dimensions, such as ...


External links


possible relevance of eigenplanes
in
cosmology Cosmology () is a branch of physics and metaphysics dealing with the nature of the universe. The term ''cosmology'' was first used in English in 1656 in Thomas Blount's ''Glossographia'', and in 1731 taken up in Latin by German philosopher ...

GNU GPL software for calculating eigenplanes
*Proof constructed by J M Shelley 2017 Linear algebra