EMX1
   HOME

TheInfoList



OR:

Homeobox protein EMX1 is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
that in humans is encoded by the ''EMX1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. The transcribed EMX1 gene is a member of the EMX family of
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
s. The EMX1 gene, along with its family members, are expressed in the developing
cerebrum The cerebrum, telencephalon or endbrain is the largest part of the brain containing the cerebral cortex (of the two cerebral hemispheres), as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. ...
(also known as the telencephalon). EMX1 plays a role in specification of positional identity, the proliferation of
neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
s, differentiation of layer-specific neuronal phenotypes and commitment to a
neuron A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa ...
al or
glial Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (brain and spinal cord) and the peripheral nervous system that do not produce electrical impulses. They maintain homeostasis, form myel ...
cell fate.


Function

The precise function of the Emx1 transcription factor is not known, however its ubiquitous nature throughout corticogenesis suggests it may confer cellular identity to cortical neurons. Emx -/- (mice that have had Emx1 gene
knocked out A knockout (abbreviated to KO or K.O.) is a fight-ending, winning criterion in several full-contact combat sports, such as boxing, kickboxing, muay thai, mixed martial arts, karate, some forms of taekwondo and other sports involving strikin ...
) are still viable and display only slight defects. These defects are restricted to the forebrain. Histologically and molecularly, the structures of the cerebral cortex appear to be normal. The hippocampus in Emx1 -/- mice, however, is typically smaller. The major deficit in Emx1-/- mice is that they completely lack the
corpus callosum The corpus callosum (Latin for "tough body"), also callosal commissure, is a wide, thick nerve tract, consisting of a flat bundle of commissural fibers, beneath the cerebral cortex in the brain. The corpus callosum is only found in placental m ...
.


Tissue distribution

Most of Emx1 transcript is detected in
cell nuclei The cell nucleus (pl. nuclei; from Latin or , meaning ''kernel'' or ''seed'') is a membrane-bound organelle found in eukaryotic cells. Eukaryotic cells usually have a single nucleus, but a few cell types, such as mammalian red blood cells, ha ...
of the developing telencephalon, including the prospective cerebral cortex, olfactory bulbs and hippocampus. Emx1 is present in practically all cortical neurons during proliferation, migration, differentiation and maturation. However, the amount of Emx 1 varies. Emx1 first appears at E9.5 in its respective mRNA, until E11.5. After this, the Emx1 signal becomes particularly potent in the ventricular zone (VZ) until E17.5. At birth and shortly thereafter, Emx1 levels in layers V and VI as well as in the SP increase.


Telencephalic development

Emx1 and Emx2 each play a critical role in regulating dorsal telencephalic development and are amongst the earliest expressed pallial-specific genes. During embryonic development, the
telencephalon The cerebrum, telencephalon or endbrain is the largest part of the brain containing the cerebral cortex (of the two cerebral hemispheres), as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. ...
is the birthplace of a diverse collection of neuronal and glial cells. These cells undergo varying patterns of cell migration in order to reach their final positions in what will become the mature
cerebral cortex The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. The cerebral cortex mostly consists of the six-layered neocortex, with just 10% consisting o ...
and
basal ganglia The basal ganglia (BG), or basal nuclei, are a group of subcortical nuclei, of varied origin, in the brains of vertebrates. In humans, and some primates, there are some differences, mainly in the division of the globus pallidus into an ext ...
. The embryonic telencephalon is subdivided into dorsal pallium and ventral subpallium. These two pallia become the mammalian cerebral cortex and basal ganglia, respectively. The dorsal telencephalon is then further divided into: Each of the aforementioned pallial domains will give rise to a distinct neuroanatomical region of the developed human brain. The ventral telencephalon can also be subdivided into two distinguishable progenitor domains: The dorsal and ventral telencephalic domains can be distinguished embryonically through distinct gene expression patterns. These genes are regionally restricted and take part in identity specification of the area of the telencephalon in which they are expressed.


Role in the mouse embryo

Emx1 expression has been shown to start from E9.5 (see
gestational age In obstetrics, gestational age is a measure of the age of a pregnancy which is taken from the beginning of the woman's last menstrual period (LMP), or the corresponding age of the gestation as estimated by a more accurate method if available. Su ...
). In the developing mouse embryo, the Emx genes are expressed principally in extended regions of the developing rostral brain, including the cerebral cortex, olfactory bulbs and olfactory epithelium. Emx1 gene expression is constricted to the dorsal telencephalon. From E9.5 until post-natal stages, Emx1 expression is associated with cortical neurogenesis, differentiation and migration, and synaptic connection generation. This suggests that Emx1 plays a crucial role in determining the identity of the developing cortex. Emx1 is not only limited to the telencephalon, rather it is also expressed in branchial patterns and in the apical ectodermal ridge of the developing limbs.


Developing forebrain

At E9.5, Emx1 expression can be witnessed within the dorsal telencephalon slightly anterior to the boundary between the diencephalon and telencephalon Emx1 is expressed in most cortical neurons within the developing telencephalon. Expression can be seen irrespective of whether the neurons are proliferating, migrating or differentiating. This means that in the developed cerebral cortex, the transcript for Emx1 is widely distributed. While distribution of the transcript may be seen throughout the developed cortex, the transcript intensity varies greatly according to developmental time. For example, the transcript for Emx1 is shown to be stronger in the ventricular zone (VZ) between E10.5 and E17.5. However, around birth and immediately thereafter, the Emx1 transcript is absent from the
marginal zone The marginal zone is the region at the interface between the non-lymphoid red pulp and the lymphoid white-pulp of the spleen. (Some sources consider it to be the part of red pulp which borders on the white pulp, while other sources consider it to ...
(MZ), only becoming stronger in cortical layers V and VI as well as subset subplate (SP) neurons. In cortical layers V and VI as well as the SP neurons, Emx1 might take part in development of early functional circuitry, as well as in defining specific cellular identities. The distribution of Emx1 is so ubiquitous in the developing brain that in mid- and late-gestation embryos, as well as postnatal mice, it is found in cerebral cortex, olfactory bulbs,
dentate gyrus The dentate gyrus (DG) is part of the hippocampal formation in the temporal lobe of the brain, which also includes the hippocampus and the subiculum. The dentate gyrus is part of the hippocampal trisynaptic circuit and is thought to contribute t ...
and hippocampus.


Regulation by Gli3

The
Gli3 Zinc finger protein GLI3 is a protein that in humans is encoded by the ''GLI3'' gene. This gene encodes a protein that belongs to the C2H2-type zinc finger proteins subclass of the Gli family. They are characterized as DNA-binding transcription ...
zinc finger transcription factor has been shown to play a role as a regulator of Emx1. In Gli3 Extra-toes mutants, the transcription factor Gli3 is mutated and as a result, Emx1 and Emx2 gene expression is lost.


References


Further reading

* * * * * * * * {{Transcription factors, g3 Transcription factors