The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology. The cosmic background radiation (CMB) was measured by Andrew McKellar in 1941 at an effective temperature of 2.3 K using CN stellar absorption lines observed by W. S. Adams.[1] Theoretical work around 1950 showed that the need for a CMB for consistency with the simplest relativistic universe models. In 1964, US radio astronomers Arno Penzias and Robert Woodrow Wilson rediscovered the CMB, estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna.[2] The new measurements were accepted as important evidence for a hot early Universe (big bang theory) and as evidence against the rival steady state theory.[3] In 1978, Penzias and Wilson were awarded the Nobel Prize for Physics for their joint measurement.


Bell Labs' Horn Antenna in Crawford Hill, NJ - In 1964 while using the Horn Antenna, Penzias and Wilson stumbled on the microwave background radiation that permeates the universe.

By the middle of the 20th century, cosmologists had developed two different theories to explain the creation of the universe. Some supported the steady-state theory, which states that the universe has always existed and will continue to survive without noticeable change. Others believed in the Big Bang theory, which states that the universe was created in a massive explosion-like event billions of years ago (later to be determined as 13.72 billion)(13,720 million).

In 1941, Andrew McKellar used W. S. Adams' spectroscopic observations of CN absorption lines in the spectrum of a B type star to measure a blackbody background temperature of 2.3 K. McKellar referred to his detection as a "'rotational' temperature of interstellar molecules", without reference to a cosmological interpretation, stating that the temperature "will have its own, perhaps limited, significance".[1]

Over two decades later, working at Bell Labs in Holmdel, New Jersey, in 1964, Arno Penzias and Robert Wilson were experimenting with a supersensitive, 6 meter (20 ft) horn antenna originally built to detect radio waves bounced off Echo balloon satellites. To measure these faint radio waves, they had to eliminate all recognizable interference from their receiver. They removed the effects of radar and radio broadcasting, and suppressed interference from the heat in the receiver itself by cooling it with liquid helium to −269 °C, only 4 K above absolute zero.

Timeline of the discovery of the CMB
Important dates and persons
1941 W. S. Adams measures B star CN absorption lines from which Andrew McKellar infers 2.3K as the "'rotational' interstellar" background Planckian temperature[1]
1946 George Gamow estimates a temperature of 50K
1946 Robert Dicke predicts a microwave background radiation temperature of "less than 20K" (ref: Helge Kragh), but later revised to 45K (ref: Stephen G. Brush)
1948 Ralph Alpher and Robert Herman re-estimate Gamow's estimate at 5K.
1949 Alpher and Herman re-re-estimate Gamow's estimate at 28K.
1960s Robert Dicke re-estimates an MBR (microwave background radiation) temperature of 40K (ref: Helge Kragh)
1960s Arno Penzias and Robert Woodrow Wilson measure the temperature to be approximately 3 K.

When Penzias and Wilson reduced their data they found a low, steady, mysterious noise that persisted in their receiver. This residual noise was 100 times more intense than they had expected, was evenly spread over the sky, and was present day and night. They were certain that the radiation they detected on a wavelength of 7.35 centimeters did not come from the Earth, the Sun, or our galaxy. After thoroughly checking their equipment, removing some pigeons nesting in the antenna and cleaning out the accumulated droppings, the noise remained. Both concluded that this noise was coming from outside our own galaxy—although they were not aware of any radio source that would account for it.

At that same time, Robert H. Dicke, Jim Peebles, and David Wilkinson, astrophysicists at Princeton University just 60 km (37 mi) away, were preparing to search for microwave radiation in this region of the spectrum. Dicke and his colleagues reasoned that the Big Bang must have scattered not only the matter that condensed into galaxies but also must have released a tremendous blast of radiation. With the proper instrumentation, this radiation should be detectable, albeit as microwaves, due to a massive redshift.

When a friend (Bernard F. Burke, Prof. of Physics at MIT) told Penzias about a preprint paper he had seen by Jim Peebles on the possibility of finding radiation left over from an explosion that filled the universe at the beginning of its existence, Penzias and Wilson began to realize the significance of what they believed was a new discovery. The characteristics of the radiation detected by Penzias and Wilson fit exactly the radiation predicted by Robert H. Dicke and his colleagues at Princeton University. Penzias called Dicke at Princeton, who immediately sent him a copy of the still-unpublished Peebles paper. Penzias read the paper and called Dicke again and invited him to Bell Labs to look at the horn antenna and listen to the background noise. Dicke, Peebles, Wilkinson and P. G. Roll interpreted this radiation as a signature of the Big Bang.

To avoid potential conflict, they decided to publish their results jointly. Two notes were rushed to the Astrophysical Journal Letters. In the first, Dicke and his associates outlined the importance of cosmic background radiation as substantiation of the Big Bang Theory.[3] In a second note, jointly signed by Penzias and Wilson titled, "A Measurement of Excess Antenna Temperature at 4080 Megacycles per Second," they reported the existence of a 3.5 K residual background noise, remaining after accounting for a sky absorption component of 2.3 K and a 0.9 K instrumental component,[4] and attributed a "possible explanation" as that given by Dicke in his companion letter.[2]

In 1978, Penzias and Wilson were awarded the Nobel Prize for Physics for their joint detection. They shared the prize with Pyotr Kapitsa, who won it for unrelated work.


  • Aaronson, Steve (January 1979). "The Light of Creation: An Interview with Arno A. Penzias and Robert W. Wilson". Bell Laboratories Record: 12–18. 
  • Abell, George O. (1982). Exploration of the Universe. 4th ed. Philadelphia: Saunders College Publishing. 
  • Asimov, Isaac (1982). Asimov's Biographical Encyclopedia of Science and Technology. 2nd ed. New York: Doubleday & Company, Inc. 
  • Bernstein, Jeremy (1984). Three Degrees Above Zero: Bell Labs in the Information Age. New York: Charles Scribner's Sons. ISBN 0-684-18170-3. 
  • Brush, Stephen G. (August 1992). "How Cosmology Became a Science". Scientific American. 267 (2): 62–70. Bibcode:1992SciAm.267b..62B. doi:10.1038/scientificamerican0892-62. 
  • Chown, Marcus (September 29, 1988). "A cosmic relic in three degrees". New Scientist: 51–55. 
  • Crawford, A.B.; Hogg, D. C.; Hunt, L. E. (July 1961). "Project Echo: A Horn-Reflector Antenna for Space Communication". The Bell System Technical Journal: 1095–1099. 
  • Disney, Michael (1984). The Hidden Universe. New York: Macmillan Publishing Company. ISBN 0-02-531670-2. 
  • Ferris, Timothy (1978). The Red Limit: The Search for the Edge of the Universe. 2nd ed. New York: Quill Press. 
  • Friedman, Herbert (1975). The Amazing Universe. Washington, DC: National Geographic Society. ISBN 0-87044-179-5. 
  • Hey, J.S. (1973). The Evolution of Radio Astronomy. New York: Neale Watson Academic Publications, Inc. ISBN 0-88202-027-7. 
  • Jastrow, Robert (1978). God and the Astronomers. New York: W. W. Norton & Company, Inc. ISBN 0-393-01187-9. 
  • Kirby-Smith, H.T. (1976). U.S. Observatories: A Directory and Travel Guide. New York: Van Nostrand Reinhold Company. ISBN 0-442-24451-7. 
  • Learner, Richard (1981). Astronomy Through the Telescope. New York: Van Nostrand Reinhold Company. ISBN 0-442-25839-9. 


  1. ^ a b c McKellar, A. (1941). "Molecular Lines from the Lowest States of Diatomic Molecules Composed of Atoms Probably Present in Interstellar Space". Publications of the Dominion Astrophysical Observatory. Vancouver, B.C., Canada. 7 (6): 251–272. Bibcode:1941PDAO....7..251P. 
  2. ^ a b Penzias, A.A.; R. W. Wilson (July 1965). "A Measurement Of Excess Antenna Temperature At 4080 Mc/s". Astrophysical Journal Letters. 142: 419–421. Bibcode:1965ApJ...142..419P. doi:10.1086/148307. 
  3. ^ a b Dicke, R. H.; Peebles, P. J. E.; Roll, P. J.; Wilkinson, D. T. (July 1965). "Cosmic Black-Body Radiation". Astrophysical Journal Letters. 142: 414–419. Bibcode:1965ApJ...142..414D. doi:10.1086/148306. 
  4. ^ Penzias, A.A.; R. W. Wilson (October 1965). "A Measurement of the Flux Density of CAS A At 4080 Mc/s". Astrophysical Journal Letters. 142: 1149–1154. Bibcode:1965ApJ...142.1149P. doi:10.1086/148384. 

External links