Dielectric waveguide
   HOME

TheInfoList



OR:

An optical waveguide is a physical structure that guides
electromagnetic waves In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ...
in the
optical spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye will respond to wavel ...
. Common types of optical
waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
s include
optical fiber An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair Hair is a protein filament that grows ...
waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides. Optical waveguides are used as components in integrated optical circuits or as the transmission medium in local and long-haul
optical communication Optical communication, also known as optical telecommunication, is communication at a distance using light to carry information. It can be performed visually or by using electronic devices. The earliest basic forms of optical communication date ...
systems. Optical waveguides can be classified according to their geometry (planar, strip, or fiber waveguides), mode structure ( single-mode, multi-mode),
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
distribution (step or gradient index), and material (
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
,
polymer A polymer (; Greek '' poly-'', "many" + '' -mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
,
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
).


Total internal reflection

The basic principles behind optical waveguides can be described using the concepts of geometrical or ray optics, as illustrated in the diagram. Light passing into a medium with higher
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
bends toward the normal by the process of
refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenomen ...
(Figure a.). Take, for example, light passing from air into glass. Similarly, light traveling in the opposite direction (from glass into air) takes the same path, bending away from the normal. This is a consequence of
time-reversal symmetry T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal, : T: t \mapsto -t. Since the second law of thermodynamics states that entropy increases as time flows toward the futur ...
. Each ray in air (black) can be mapped to a ray in the glass (blue), as shown in Figure b. There's a one-to-one correspondence. But because of refraction, some of the rays in the glass are left out (red). The remaining rays are trapped in the glass by a process called ''
total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflect ...
''. They are incident on the glass-air interface at an angle above the ''
critical angle Critical angle may refer to: *Critical angle (optics), the angle of incidence above which total internal reflection occurs *Critical angle of attack In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a reference lin ...
''. These extra rays correspond to a higher ''
density of states In solid state physics and condensed matter physics, the density of states (DOS) of a system describes the number of modes per unit frequency range. The density of states is defined as D(E) = N(E)/V , where N(E)\delta E is the number of states i ...
'' in more-advanced formulations based on the
Green's function In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions. This means that if \operatorname is the linear differenti ...
. Using total internal reflection, we can trap and guide the light in a dielectric waveguide (Figure c). The red rays bounce off both the top and bottom surface of the high index medium. They're guided even if the slab curves or bends, so long as it bends slowly. This is the basic principle behind
fiber optics An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means t ...
in which light is guided along a high index glass ''core'' in a lower index glass ''cladding'' (Figure d). Ray optics only gives a rough picture of how waveguides work.
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits ...
can be solved by analytical or numerical methods for a full-field description of a dielectric waveguide.


Dielectric slab waveguide

Perhaps the simplest optical waveguide is the dielectric slab waveguide, also called a planar waveguide. Owing to their simplicity, slab waveguides are often used as toy models but also find application in on-chip devices like
arrayed waveguide grating {{Unreferenced, date=April 2019 Arrayed waveguide gratings (AWG) are commonly used as Optical add-drop multiplexer, optical (de)multiplexers in wavelength division multiplexing, wavelength division multiplexed (WDM) systems. These devices are capa ...
s and acousto-optic filters and modulators. The slab waveguide consists of three layers of materials with different dielectric constants, extending infinitely in the directions parallel to their interfaces. Light is confined in the middle layer by
total internal reflection Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflect ...
if the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
of the middle layer is larger than that of the surrounding layers. The slab waveguide is essentially a one-dimensional waveguide. It traps light only normal to the dielectric interfaces. For guided
modes Mode ( la, modus meaning "manner, tune, measure, due measure, rhythm, melody") may refer to: Arts and entertainment * '' MO''D''E (magazine)'', a defunct U.S. women's fashion magazine * ''Mode'' magazine, a fictional fashion magazine which is ...
, the field in domain II in the diagram is propagating and can be treated as a
plane wave In physics, a plane wave is a special case of wave or field: a physical quantity whose value, at any moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any time t, ...
. The field in domains I and III evanescently decay away from the slab. The plane wave in domain II bounces between the top and bottom interfaces at some angle typically specified by the \vec, the
wave vector In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), ...
in the plane of the slab. Guided modes constructively interfere on one complete roundtrip in the slab. At each frequency, one or more modes can be found giving a set of eigenvalues (\omega, \vec) which can be used to construct a
band diagram In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted ''x''. These diagrams ...
or
dispersion relation In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given t ...
. Because guided modes are trapped in the slab, they cannot be excited by light incident on the top or bottom interfaces. Light can be ''end-fire or butte coupled'' by injecting it with a lens in the plane of the slab. Alternatively a coupling element may be used to couple light into the waveguide, such as a grating coupler or prism coupler. Waveguide are used in
augmented reality Augmented reality (AR) is an interactive experience that combines the real world and computer-generated content. The content can span multiple sensory modalities, including visual, auditory, haptic, somatosensory and olfactory. AR can be de ...
glasses Glasses, also known as eyeglasses or spectacles, are vision eyewear, with lenses (clear or tinted) mounted in a frame that holds them in front of a person's eyes, typically utilizing a bridge over the nose and hinged arms (known as temples ...
. There are 2 technologies: diffractive waveguides and reflective waveguides.


Two-dimensional waveguide


Strip waveguide

A strip waveguide is basically a strip of the layer confined between cladding layers. The simplest case is a rectangular waveguide, which is formed when the guiding layer of the slab waveguide is restricted in both transverse directions rather than just one. Rectangular waveguides are used in integrated optical circuits and in
laser diode The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with ...
s. They are commonly used as the basis of such optical components as
Mach–Zehnder interferometer The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure p ...
s and wavelength division multiplexers. The cavities of
laser diode The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with ...
s are frequently constructed as rectangular optical waveguides. Optical waveguides with rectangular geometry are produced by a variety of means, usually by a
planar process The planar process is a manufacturing process used in the semiconductor industry to build individual components of a transistor, and in turn, connect those transistors together. It is the primary process by which silicon integrated circuit chips ...
. The field distribution in a rectangular waveguide cannot be solved analytically, however approximate solution methods, such as Marcatili's method, Extended Marcatili's method and Kumar's method, are known.


Rib waveguide

A rib waveguide is a waveguide in which the guiding layer basically consists of the slab with a strip (or several strips) superimposed onto it. Rib waveguides also provide confinement of the wave in two dimensions and near-unity confinement is possible in multi-layer rib structures.


Segmented waveguide and photonic crystal waveguide

Optical waveguides typically maintain a constant cross-section along their direction of propagation. This is for example the case for strip and of rib waveguides. However, waveguides can also have periodic changes in their cross-section while still allowing lossless transmission of light via so-called Bloch modes. Such waveguides are referred to as segmented waveguides (with a 1D patterning along the direction of propagation) or as photonic crystal waveguides (with a 2D or 3D patterning).


Laser-inscribed waveguide

Optical waveguides find their most important application in
photonics Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though ...
. Configuring the waveguides in 3D space provides integration between electronic components on a chip and optical fibers. Such waveguides may be designed for a single mode propagation of infrared light at telecommunication wavelengths, and configured to deliver optical signal between input and output locations with very low loss. One of the methods for constructing such waveguides utilizes photorefractive effect in transparent materials. An increase in the refractive index of a material may be induced by nonlinear absorption of pulsed laser light. In order to maximize the increase of the refractive index, a very short (typically femtosecond) laser pulses are used, and focused with a high NA microscope objective. By translating the focal spot through a bulk transparent material the waveguides can be directly written. A variation of this method uses a low NA microscope objective and translates the focal spot along the beam axis. This improves the overlap between the focused laser beam and the photorefractive material, thus reducing power needed from the laser. When transparent material is exposed to an unfocused laser beam of sufficient brightness to initiate photorefractive effect, the waveguides may start forming on their own as a result of an accumulated
self-focusing Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens ...
. The formation of such waveguides leads to a breakup of the laser beam. Continued exposure results in a buildup of the refractive index towards the centerline of each waveguide, and collapse of the mode field diameter of the propagating light. Such waveguides remain permanently in the glass and can be photographed off-line (see the picture on the right).


Light pipe

Light pipes are tubes or cylinders of solid material used to guide light a short distance. In electronics, plastic light pipes are used to guide light from LEDs on a circuit board to the user interface surface. In buildings, light pipes are used to transfer illumination from outside the building to where it is needed inside.


Optical fiber waveguide

Optical fiber is typically a circular cross-section ''dielectric waveguide'' consisting of a
dielectric In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the ma ...
material surrounded by another dielectric material with a lower
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, ...
. Optical fibers are most commonly made from
silica glass Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses in which other ingredients are added which change ...
, however other
glass Glass is a non- crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenchin ...
materials are used for certain applications and plastic optical fiber can be used for short-distance applications.


See also

* ARROW waveguide * Cutoff wavelength *
Dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insula ...
*
Digital planar holography Digital planar holography (DPH) is a method for designing and fabricating miniature components for integrated optics. It was invented by Vladimir Yankov and first published in 2003. The essence of the DPH technology is embedding computer designed ...
*
Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
*
Equilibrium mode distribution The equilibrium mode owerdistribution of light travelling in an optical waveguide or fiber, is the distribution of light that is no longer changing with fibre length or with input modal excitation. This phenomenon requires both mode filtering and ...
*
Erbium-doped waveguide amplifier An erbium-doped waveguide amplifier (or EDWA) is a type of an optical amplifier enhanced with erbium. It is a close relative of an EDFA, erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDF ...
*
Leaky mode Leakey may refer to: *Leakey, Texas, U.S., a city * Leakey (crater), a lunar impact crater *Leakey (surname) *7958 Leakey, an asteroid *Leakey Independent School District The Leakey Independent School District is a public school district based in ...
* Lightguide display *
Photonic crystal A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic ...
* Photonic-crystal fiber * Prism coupler *
Transmission medium A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulat ...
*
Waveguide (radio frequency) In radio-frequency engineering and communications engineering, waveguide is a hollow metal pipe used to carry radio waves. This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting m ...
*
Waveguide A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of energy by restricting the transmission of energy to one direction. Without the physical constraint of a waveguide, wave intensities de ...
* Zero-mode waveguide


References

{{Reflist


External links


AdvR_nonlinear_waveguides_in_rubidium-doped_potassium_titanyl_phosphate
_(KTP).html" ;"title="potassium titanyl phosphate">AdvR nonlinear waveguides in rubidium-doped potassium_titanyl_phosphate">AdvR_nonlinear_waveguides_in_rubidium-doped_potassium_titanyl_phosphate
_(KTP) Optical_components.html" ;"title="potassium titanyl phosphate
(KTP)">potassium titanyl phosphate">AdvR nonlinear waveguides in rubidium-doped potassium titanyl phosphate
(KTP) Optical components">potassium titanyl phosphate
(KTP)">potassium titanyl phosphate">AdvR nonlinear waveguides in rubidium-doped potassium titanyl phosphate
(KTP) Optical components Photonics pl:Światłowód ta:அலைநடத்தி