DNA-encoded chemical library
   HOME

TheInfoList



OR:

DNA-encoded chemical libraries (DEL) is a technology for the
synthesis Synthesis or synthesize may refer to: Science Chemistry and biochemistry *Chemical synthesis, the execution of chemical reactions to form a more complex molecule from chemical precursors ** Organic synthesis, the chemical synthesis of organ ...
and
screening Screening may refer to: * Screening cultures, a type a medical test that is done to find an infection * Screening (economics), a strategy of combating adverse selection (includes sorting resumes to select employees) * Screening (environmental), a ...
on an unprecedented scale of collections of
small molecule Within the fields of molecular biology and pharmacology, a small molecule or micromolecule is a low molecular weight (≤ 1000 daltons) organic compound that may regulate a biological process, with a size on the order of 1 nm. Many drugs ar ...
compounds. DEL is used in
medicinal chemistry Medicinal or pharmaceutical chemistry is a scientific discipline at the intersection of chemistry and pharmacy involved with designing and developing pharmaceutical drugs. Medicinal chemistry involves the identification, synthesis and developm ...
to bridge the fields of
combinatorial chemistry Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number (tens to thousands or even millions) of compounds in a single process. These compound libraries can be made as mixtures, sets of individua ...
and
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
. The aim of DEL technology is to accelerate the
drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by ...
process and in particular early phase discovery activities such as target validation and hit identification. DEL technology involves the conjugation of chemical compounds or building blocks to short DNA fragments that serve as identification bar codes and in some cases also direct and control the chemical synthesis. The technique enables the mass creation and interrogation of libraries via affinity selection, typically on an immobilized protein target. A homogeneous method for screening DNA-encoded libraries has recently been developed which uses water-in-oil emulsion technology to isolate, count and identify individual ligand-target complexes in a single-tube approach. In contrast to conventional screening procedures such as
high-throughput screening High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handlin ...
, biochemical assays are not required for binder identification, in principle allowing the isolation of binders to a wide range of proteins historically difficult to tackle with conventional screening technologies. So, in addition to the general discovery of target specific molecular compounds, the availability of binders to pharmacologically important, but so-far “undruggable” target proteins opens new possibilities to develop novel drugs for diseases that could not be treated so far. In eliminating the requirement to initially assess the activity of hits it is hoped and expected that many of the high affinity binders identified will be shown to be active in independent analysis of selected hits, therefore offering an efficient method to identify high quality hits and pharmaceutical leads.


DNA-encoded chemical libraries and display technologies

Until recently, the application of
molecular evolution Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics ...
in the laboratory had been limited to display technologies involving biological molecules, where small molecules lead discovery was considered beyond this biological approach. DEL has opened the field of display technology to include non-natural compounds such as small molecules, extending the application of molecular evolution and natural selection to the identification of small molecule compounds of desired activity and function. DNA encoded chemical libraries bear resemblance to biological display technologies such as antibody phage display technology,
yeast display Yeast display (or yeast surface display) is a protein engineering technique that uses the expression of recombinant proteins incorporated into the cell wall of yeast for isolating and engineering antibodies. Development The yeast display technique ...
,
mRNA display mRNA display is a display technique used for ''in vitro'' protein, and/or peptide evolution to create molecules that can bind to a desired target. The process results in translated peptides or proteins that are associated with their mRNA progenitor ...
and aptamer SELEX. In antibody phage display, antibodies are physically linked to phage particles that bear the gene coding for the attached antibody, which is equivalent to a physical linkage of a “
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological proper ...
” (the protein) and a “
genotype The genotype of an organism is its complete set of genetic material. Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. The number of alleles an individual can have in a ...
” (the gene encoding for the protein ). Phage-displayed antibodies can be isolated from large antibody libraries by mimicking
molecular evolution Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics ...
: through rounds of selection (on an immobilized protein target), amplification and translation. In DEL the linkage of a small molecule to an identifier DNA code allows the facile identification of binding molecules. DEL libraries are subjected to affinity selection procedures on an immobilized target protein of choice, after which non-binders are removed by washing steps, and binders can subsequently be amplified by polymerase chain reaction (PCR) and identified by virtue of their DNA code (e.g.by DNA sequencing). In evolution-based DEL technologies (see below) hits can be further enriched by performing rounds of selection, PCR amplification and translation in analogy to biological display systems such as antibody phage display. This makes it possible to work with much larger libraries.


History

“Synthesize a multi-component mixture of compounds in a single process and screen it also a single process”. This is the principle of combinatorial chemistry invented by Prof. Furka Á. (Eötvös Loránd University Budapest Hungary) in 1982, and described it including the method of synthesis of combinatorial libraries and that of a deconvolution strategy in a document notarized in the same year. Motivations that led to the invention had been published in 2002. DELs are DNA encoded combinatorial libraries (DECLs) and the combinatorial principle clearly prevails in their application. The concept of DNA-encoding was first described in a theoretical paper by Brenner and Lerner in 1992 in which was proposed to link each molecule of a chemically synthesized entity to a particular
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
sequence constructed in parallel and to use this encoding genetic tag to identify and enrich active compounds. In 1993 the first practical implementation of this approach was presented by S. Brenner and K. Janda and similarly by the group of M.A. Gallop. Brenner and Janda suggested to generate individual encoded library members by an alternating parallel
combinatorial synthesis Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number (tens to thousands or even millions) of compounds in a single process. These compound libraries can be made as mixtures, sets of individua ...
of the heteropolymeric chemical compound and the appropriate oligonucleotide sequence on the same bead in a “split-&-pool”-based fashion (see below). Since unprotected DNA is restricted to a narrow window of conventional reaction conditions, until the end of the 1990s a number of alternative encoding strategies were envisaged (i.e. MS-based compound tagging,
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
encoding,
haloaromatic In organic chemistry, an aryl halide (also known as haloarene) is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhi ...
tagging, encoding by secondary
amine In chemistry, amines (, ) are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Amines are formally derivatives of ammonia (), wherein one or more hydrogen atoms have been replaced by a substituen ...
s,
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
devices.), mainly to avoid inconvenient solid phase DNA synthesis and to create easily screenable combinatorial libraries in high-throughput fashion. However, the selective amplificability of DNA greatly facilitates library screening and it becomes indispensable for the encoding of organic compounds libraries of this unprecedented size. Consequently, at the beginning of the 2000s DNA-combinatorial chemistry experienced a revival. The beginning of the millennium saw the introduction of several independent developments in DEL technology. These technologies can be classified under two general categories: non-evolution-based and evolution-based DEL technologies capable of
molecular evolution Molecular evolution is the process of change in the sequence composition of cellular molecules such as DNA, RNA, and proteins across generations. The field of molecular evolution uses principles of evolutionary biology and population genetics ...
. The first category benefits from the ability to use off the shelf reagents and therefore enables rather straightforward library generation. Hits can be identified by DNA sequencing, however DNA translation and therefore molecular evolution is not feasible by these methods. The split and pool approaches developed by researchers at Praecis Pharmaceuticals (now owned by GlaxoSmithKline), Nuevolution (Copenhagen, Denmark) and ESAC technology developed in the laboratory of Prof D. Neri (Institute of Pharmaceutical Science, Zurich, Switzerland) fall under this category. ESAC technology sets itself apart being a combinatorial self-assembling approach which resembles fragment based hit discovery (Fig 1b). Here DNA annealing enables discrete building block combinations to be sampled, but no chemical reaction takes place between them. Examples of evolution-based DEL technologies are DNA-routing developed by Prof. D.R. Halpin and Prof. P.B. Harbury (Stanford University, Stanford, CA), DNA-templated synthesis developed by Prof. D. Liu (Harvard University, Cambridge, MA) and commercialized by Ensemble Therapeutics (Cambridge, MA) and YoctoReactor technology. developed and commercialized by Vipergen (Copenhagen, Denmark). These technologies are described in further detail below. DNA-templated synthesis and YoctoReactor technology require the prior conjugation of chemical building blocks (BB) to a DNA oligonucleotide tag before library assembly, therefore more upfront work is required before library assembly. Furthermore, the DNA tagged BBs enable the generation of a genetic code for synthesized compounds and artificial translation of the genetic code is possible: That is the BB's can be recalled by the PCR-amplified genetic code, and the library compounds can be regenerated. This, in turn, enables the principle of Darwinian natural selection and evolution to be applied to small molecule selection in direct analogy to biological display systems; through rounds of selection, amplification and translation.


Non-evolution based technologies


Combinatorial libraries

Combinatorial libraries are special multi-component compound mixtures that are synthesized in a single stepwise process. They differ from collection of individual compounds as well as from a series of compounds prepared by parallel synthesis. Combinatorial libraries have important features. ″ Mixtures are used in their synthesis. The use of mixtures ensures the very high efficiency of the process. Both reactants could be mixtures but for practical reasons the split-mix procedure is used: one mixture is divided into portions that are coupled with the BBs.Á. Furka, F. Sebestyén, M. Asgedom, G. Dibó, Cornucopia of peptides by synthesis In Highlights of Modern Biochemistry, Proceedings of the 14th International Congress of Biochemistry, VSP. Utrecht, The Netherlands, 1988, Vol. 5, p 47.Furka Á, Sebestyén F, Asgedom M, Dibó G ( 1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Peptide Protein Res 37; 487-93. The mixtures are so important that there is no combinatorial library without using a mixture in the synthesis, and if a mixture is used in a process inevitably combinatorial library forms. ″ Components of the libraries need to be present in nearly equal molar quantities. In order to achieve this as closely as possible the mixtures are divided into equal portions and after pooling a thorough mixing is needed. ″ Since the structure of components is unknown deconvolution methods need to be used in screening. For this reason, encoding methods had been developed. Coding molecules are attached to the beads of the solid support that record the coupled BBs and their sequence. One of these methods is encoding by DNA oligomers. ″ It is a remarkable feature of combinatorial libraries that the whole compound mixture can be screened in a single process. Since both the synthesis and screening are very efficient procedures the use of combinatorial libraries in pharmaceutical research leads to enormous savings. In solid phase combinatorial synthesis only a single compound forms in each bead. For this reason, the number of components in the library can't exceed the number of beads of the solid support. This means that the number of components in such libraries is limited. This restraint was eliminated by Harbury and Halpin. In their synthesis of DELs, the solid support is omitted and BBs are attached directly to the encoding DNA oligomers. This new approach helps to increase practically unlimitedly the number of components of DNA encoded combinatorial libraries (DECLs).


Split-&-Pool DNA Encoding

In order to apply
combinatorial chemistry Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number (tens to thousands or even millions) of compounds in a single process. These compound libraries can be made as mixtures, sets of individua ...
for the synthesis of DNA-encoded chemical libraries, a Split-&-Pool approach was pursued. Initially a set of unique DNA-
oligonucleotides Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
(n) each containing a specific coding sequence is chemically conjugated to a corresponding set of small organic molecules. Consequently, the
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
-conjugate compounds are mixed ("Pool") and divided ("Split") into a number of groups (m). In appropriate conditions a second set of building blocks (m) are coupled to the first one and a further
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
which is coding for the second modification is enzymatically introduced before mixing again. This “split-&-pool” steps can be iterated a number of times (r) increasing at each round the library size in a combinatorial manner (i.e. (n x m)r). Alternatively, peptide nucleic acids have been used to encode libraries prepared by "split-&-pool" method. A benefit of PNA-encoding is that the chemistry can be performed by standard SPPS.


Stepwise coupling of coding DNA fragments to nascent organic molecules

A promising strategy for the construction of DNA-encoded libraries is represented by the use of multifunctional building blocks
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms ...
ly conjugated to an
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
serving as a “core structure” for library synthesis. In a ‘pool-and-split’ fashion a set of multifunctional scaffolds undergo orthogonal reactions with series of suitable reactive partners. Following each reaction step, the identity of the modification is encoded by an enzymatic addition of DNA segment to the original DNA “core structure”. The use of ''N''-protected
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s covalently attached to a DNA fragment allow, after a suitable deprotection step, a further amide bond formation with a series of
carboxylic acid In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is or , with R referring to the alkyl, alkenyl, aryl, or other group. Carboxylic ...
s or a
reductive amination Reductive amination (also known as reductive alkylation) is a form of amination that involves the conversion of a carbonyl group to an amine via an intermediate imine. The carbonyl group is most commonly a ketone or an aldehyde. It is considered ...
with
aldehydes In organic chemistry, an aldehyde () is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl grou ...
. Similarly,
diene In organic chemistry a diene ( ) (diolefin ( ) or alkadiene) is a covalent compound that contains two double bonds, usually among carbon atoms. They thus contain two alk''ene'' units, with the standard prefix ''di'' of systematic nomenclature. ...
carboxylic acids used as scaffolds for library construction at the 5’-end of amino modified
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
, could be subjected to a Diels-Alder reaction with a variety of
maleimide Maleimide is a chemical compound with the formula H2C2(CO)2NH (see diagram). This unsaturated imide is an important building block in organic synthesis. The name is a contraction of maleic acid and imide, the -C(O)NHC(O)- functional group. Malei ...
derivatives. After completion of the desired reaction step, the identity of the chemical moiety added to the
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
is established by the annealing of a partially complementary
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
and by a subsequent Klenow fill-in DNA-polymerization, yielding a double stranded DNA fragment. The synthetic and encoding strategies described above enable the facile construction of DNA-encoded libraries of a size up to 104 member compounds carrying two sets of “building blocks”. However the stepwise addition of at least three independent sets of chemical moieties to a tri-functional core building block for the construction and encoding of a very large DNA-encoded library (comprising up to 106 compounds) can also be envisaged.(Fig.2)


Combinatorial self-assembling


Encoded self-assembling chemical libraries

Encoded Self-Assembling Chemical (ESAC) libraries rely on the principle that two sublibraries of a size of x members (e.g. 103) containing a constant complementary hybridization domain can yield a combinatorial DNA-duplex library after hybridization with a complexity of x2 uniformly represented library members (e.g. 106). Each sub-library member would consist of an
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
containing a variable, coding region flanked by a constant DNA sequence, carrying a suitable chemical modification at the oligonucleotide extremity. The ESAC sublibraries can be used in at least four different embodiments. * A sub-library can be paired with a complementary oligonucleotide and used as a DNA encoded library displaying a single covalently linked compound for affinity-based selection experiments. * A sub-library can be paired with an oligonucleotide displaying a known binder to the target, thus enabling affinity maturation strategies. * Two individual sublibraries can be assembled combinatorially and used for the ''de novo'' identification of bindentate binding molecules. * Three different sublibraries can be assembled to form a combinatorial triplex library. Preferential binders isolated from an affinity-based selection can be PCR-amplified and decoded on complementary
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
microarrays A microarray is a multiplex lab-on-a-chip. Its purpose is to simultaneously detect the expression of thousands of genes from a sample (e.g. from a tissue). It is a two-dimensional array on a solid substrate—usually a glass slide or silicon ...
or by concatenation of the codes, subcloning and
sequencing In genetics and biochemistry, sequencing means to determine the primary structure (sometimes incorrectly called the primary sequence) of an unbranched biopolymer. Sequencing results in a symbolic linear depiction known as a sequence which succ ...
. The individual building blocks can eventually be conjugated using suitable linkers to yield a drug-like high-affinity compound. The characteristics of the linker (e.g. length, flexibility, geometry, chemical nature and solubility) influence the
binding affinity In biochemistry and pharmacology, a ligand is a substance that forms a complex with a biomolecule to serve a biological purpose. The etymology stems from ''ligare'', which means 'to bind'. In protein-ligand binding, the ligand is usually a mol ...
and the chemical properties of the resulting binder.(Fig.3) Bio-panning experiments on HSA of a 600-member ESAC library allowed the isolation of the 4-(''p''-iodophenyl)butanoic moiety. The compound represents the core structure of a series of portable
albumin Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins ...
binding molecules and of Albufluor a recently developed
fluorescein Fluorescein is an organic compound and dye based on the xanthene tricyclic structural motif, formally belonging to triarylmethine dyes family. It is available as a dark orange/red powder slightly soluble in water and alcohol. It is widely used ...
angiographic
contrast agent A contrast agent (or contrast medium) is a substance used to increase the contrast of structures or fluids within the body in medical imaging. Contrast agents absorb or alter external electromagnetism or ultrasound, which is different from radiop ...
currently under clinical evaluation. ESAC technology has been used for the isolation of potent inhibitors of bovine
trypsin Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting these long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the dig ...
and for the identification of novel inhibitors of stromelysin-1 (
MMP-3 Stromelysin-1 also known as matrix metalloproteinase-3 (MMP-3) is an enzyme that in humans is encoded by the ''MMP3'' gene. The MMP3 gene is part of a cluster of MMP genes which localize to chromosome 11q22.3. MMP-3 has an estimated molecular wei ...
), a matrix metalloproteinase involved in both physiological and pathological tissue remodeling processes, as well as in disease processes, such as
arthritis Arthritis is a term often used to mean any disorder that affects joints. Symptoms generally include joint pain and stiffness. Other symptoms may include redness, warmth, swelling, and decreased range of motion of the affected joints. In som ...
and
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
.


Evolution-based technologies


DNA-routing

In 2004, D.R. Halpin and P.B. Harbury presented a novel intriguing method for the construction of DNA-encoded libraries. For the first time the DNA-conjugated templates served for both encoding and programming the infrastructure of the “split-&-pool” synthesis of the library components. The design of Halpin and Harbury enabled alternating rounds of selection, PCR amplification and diversification with small organic molecules, in complete analogy to phage display technology. The DNA-routing machinery consists of a series of connected columns bearing resin-bound anticodons, which could sequence-specifically separate a population of DNA-templates into spatially distinct locations by hybridization. According to this split-and-pool protocol a
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
combinatorial library DNA-encoded of 106 members was generated.


DNA-templated synthesis

In 2001 David Liu and co-workers showed that complementary DNA
oligonucleotides Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
can be used to assist certain synthetic
reactions Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction *Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and me ...
, which do not efficiently take place in
solution Solution may refer to: * Solution (chemistry), a mixture where one substance is dissolved in another * Solution (equation), in mathematics ** Numerical solution, in numerical analysis, approximate solutions within specified error bounds * Soluti ...
at low
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
. A DNA-heteroduplex was used to accelerate the reaction between chemical moieties displayed at the extremities of the two DNA strands. Furthermore, the "proximity effect", which accelerates bimolecular reaction, was shown to be distance-independent (at least within a distance of 30
nucleotides Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules w ...
). In a sequence-programmed fashion oligonucleotides carrying one chemical reactant group were hybridized to complementary oligonucleotide derivatives carrying a different reactive chemical group. The proximity conferred by the DNA hybridization drastically increases the effective
molarity Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solu ...
of the reaction reagents attached to the oligonucleotides, enabling the desired reaction to occur even in an aqueous environment at concentrations which are several orders of magnitude lower than those needed for the corresponding conventional organic reaction not DNA-templated. Using a DNA-templated set-up and sequence-programmed synthesis Liu and co-workers generated a 64-member compound DNA encoded library of
macrocycles Macrocycles are often described as molecules and ions containing a ring of twelve or more atoms. Classical examples include the crown ethers, calixarenes, porphyrins, and cyclodextrins. Macrocycles describe a large, mature area of chemistry. ...
.


3-Dimensional proximity-based technology (YoctoReactor technology)

The YoctoReactor (yR) is a 3D proximity-driven approach which exploits the self-assembling nature of DNA oligonucleotides into 3, 4 or 5-way junctions to direct small molecule synthesis at the center of the junction. Figure 5 illustrates the basic concept with a 4-way DNA junction. The center of the DNA junction constitutes a volume on the order of a
yocto A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The pre ...
liter, hence the name YoctoReactor. This volume contains a single molecule reaction yielding reaction concentrations in the high mM range. The effective concentration facilitated by the DNA greatly accelerates chemical reactions that otherwise would not take place at the actual concentration several orders of magnitude lower.


Building a yR library

Figure 6 illustrates the generation of a yR library using a 3-way DNA junction. In summary, chemical building-blocks (BB) are attached via cleavable or non-cleavable linkers to three types of bispecific DNA oligonucleotides (oligo-BBs) representing each arm of the yR. To facilitate synthesis in a combinatorial manner, the oligo-BBs are designed such that the DNA contains (a) the code for an attached BB at the distal end of the oligo (colored lines) and (b) areas of constant DNA sequence (black lines) to bring about the self-assembly of the DNA into a 3-way junction (independently of the BB) and the subsequent chemical reaction. Chemical reactions are performed via a stepwise procedure and after each step the DNA is ligated and the product purified by polyacryamide gel electrophoresis. Cleavable linkers (BB-DNA) are used for all but one position yielding a library of small molecules with a single covalent link to the DNA code. Table 1 outlines how libraries of different sizes can be generated using yR technology. The yR design approach provides an unvarying reaction site with regard to both (a) distance between reactants and (b) sequence environment surrounding the reaction site. Furthermore, the intimate connection between the code and the BB on the oligo-BB moieties which are mixed combinatorially in a single pot confers a high fidelity to the encoding of the library. The code of the synthesized products, furthermore, is not preset, but rather is assembled combinatorially and synthesized in synchronicity with the innate product.


Homogeneous screening of yoctoreactor libraries

A homogeneous method for screening yoctoreactor libraries (yR) has recently been developed which uses water-in-oil emulsion technology to isolate individual ligand-target complexes. Called Binder Trap Enrichment (BTE), ligands to a protein target are identified by trapping binding pairs (DNA-labelled protein target and yR ligand) in emulsion droplets during dissociation dominated kinetics. Once trapped, the target and ligand DNA are joined by ligation, thus preserving the binding information. Hereafter, identification of hits is essentially a counting exercise: information on binding events is deciphered by sequencing and counting the joined DNA - selective binders are counted with a much higher frequency than random binders. This is possible because random trapping of target and ligand is "diluted" by the high number of water droplets in the emulsion. The low noise and background signal characteristic of BTE is attributed to the "dilution" of the random signal, the lack of surface artifacts and the high fidelity of the yR library and screening method. Screening is performed in a single tube method. Biologically active hits are identified in a single round of BTE characterized by a low false positive rate. BTE mimics the non-equilibrium nature of in vivo ligand-target interactions and offers the unique possibility to screen for target specific ligands based on ligand-target residence time because the emulsion, which traps the binding complex, is formed during a dynamic dissociation phase.


Decoding of DNA-encoded chemical libraries

Following selection from DNA-encoded chemical libraries, the decoding strategy for the fast and efficient identification of the specific binding compounds is crucial for the further development of the DEL technology. So far, Sanger-sequencing-based decoding, microarray-based methodology and
high-throughput sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The ...
techniques represented the main methodologies for the decoding of DNA-encoded library selections.


Sanger sequencing-based decoding

Although many authors implicitly envisaged a traditional
Sanger sequencing Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederi ...
-based decoding, the number of codes to sequence simply according to the complexity of the library is definitely an unrealistic task for a traditional
Sanger sequencing Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederi ...
approach. Nevertheless, the implementation of
Sanger sequencing Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederi ...
for decoding DNA-encoded chemical libraries in high-throughput fashion was the first to be described. After selection and PCR amplification of the DNA-tags of the library compounds, concatamers containing multiple coding sequences were generated and ligated into a
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
. Following
Sanger sequencing Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederi ...
of a representative number of the resulting
colonies In modern parlance, a colony is a territory subject to a form of foreign rule. Though dominated by the foreign colonizers, colonies remain separate from the administration of the original country of the colonizers, the '' metropolitan state'' ...
revealed the frequencies of the codes present in the DNA-encoded library sample before and after selection.


Microarray-based decoding

A DNA microarray is a device for high-throughput investigations widely used in
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
and in
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...
. It consists of an arrayed series of microscopic spots (‘features’ or ‘locations’) containing few picomoles of
oligonucleotides Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
carrying a specific DNA sequence. This can be a short section of a
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
or other DNA element that are used as probes to
hybridize Hybridization (or hybridisation) may refer to: *Hybridization (biology), the process of combining different varieties of organisms to create a hybrid *Orbital hybridization, in chemistry, the mixing of atomic orbitals into new hybrid orbitals *Nu ...
a DNA or
RNA Ribonucleic acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation and expression of genes. RNA and deoxyribonucleic acid ( DNA) are nucleic acids. Along with lipids, proteins, and carbohydra ...
sample under suitable conditions. Probe-target hybridization is usually detected and quantified by
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
-based detection of
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with se ...
-labeled targets to determine relative abundance of the target
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
sequences. Microarray has been used for the successfully decoding of ESAC DNA-encoded libraries and PNA-encoded libraries. The coding
oligonucleotides Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
representing the individual chemical compounds in the library, are spotted and chemically linked onto the microarray slides, using a BioChip Arrayer robot. Subsequently, the
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
tags of the binding compounds isolated from the selection are PCR amplified using a
fluorescent Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
primer Primer may refer to: Arts, entertainment, and media Films * ''Primer'' (film), a 2004 feature film written and directed by Shane Carruth * ''Primer'' (video), a documentary about the funk band Living Colour Literature * Primer (textbook), a t ...
and hybridized onto the DNA- microarray slide. Afterwards,
microarrays A microarray is a multiplex lab-on-a-chip. Its purpose is to simultaneously detect the expression of thousands of genes from a sample (e.g. from a tissue). It is a two-dimensional array on a solid substrate—usually a glass slide or silicon ...
are analyzed using a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
scan and spot intensities detected and quantified. The enrichment of the preferential binding compounds is revealed comparing the spots intensity of the DNA- microarray slide before and after selection.


Decoding by high throughput sequencing

According to the complexity of the DNA encoded chemical library (typically between 103 and 106 members), a conventional
Sanger sequencing Sanger sequencing is a method of DNA sequencing that involves electrophoresis and is based on the random incorporation of chain-terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication. After first being developed by Frederi ...
based decoding is unlikely to be usable in practice, due both to the high cost per base for the sequencing and to the tedious procedure involved.
High throughput sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The ...
technologies exploited strategies that parallelize the sequencing process displacing the use of
capillary A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
electrophoresis Electrophoresis, from Ancient Greek ἤλεκτρον (ḗlektron, "amber") and φόρησις (phórēsis, "the act of bearing"), is the motion of dispersed particles relative to a fluid under the influence of a spatially uniform electric fie ...
and producing thousands or millions of sequences at once. In 2008 was described the first implementation of a
high-throughput sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The ...
technique originally developed for genome sequencing (i.e. " 454 technology") to the fast and efficient decoding of a DNA encoded chemical library comprising 4000 compounds. This study led to the identification of novel chemical compounds with submicromolar
dissociation constant In chemistry, biochemistry, and pharmacology, a dissociation constant (K_D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex fa ...
s towards streptavidin and definitely shown the feasibility to construct, perform selections and decode DNA-encoded libraries containing millions of chemical compounds.


See also

*
Drug discovery In the fields of medicine, biotechnology and pharmacology, drug discovery is the process by which new candidate medications are discovered. Historically, drugs were discovered by identifying the active ingredient from traditional remedies or by ...
*
High-throughput screening High-throughput screening (HTS) is a method for scientific experimentation especially used in drug discovery and relevant to the fields of biology, materials science and chemistry. Using robotics, data processing/control software, liquid handlin ...
*
Combinatorial chemistry Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number (tens to thousands or even millions) of compounds in a single process. These compound libraries can be made as mixtures, sets of individua ...
*
DNA sequencing DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. Th ...
* Phage display


References

{{DEFAULTSORT:Dna Encoded Chemical Library Biotechnology Scientific techniques Drug discovery Molecular biology Combinatorial chemistry