DC steady state
   HOME

TheInfoList



OR:

In
electronics The field of electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow by amplification ...
, steady state is an equilibrium condition of a circuit or network that occurs as the effects of
transients Transience or transient may refer to: Music * ''Transient'' (album), a 2004 album by Gaelle * ''Transience'' (Steven Wilson album), 2015 * Transience (Wreckless Eric album) Science and engineering * Transient state, when a process variable or ...
are no longer important. Steady state is reached (attained) after transient (initial, oscillating or
turbulent In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
) state has subsided. During steady state, a system is in relative stability. Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.


Calculation methods

Steady state calculation methods can be sorted into
time-domain Time domain refers to the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time. In the time domain, the signal or function's value is known for all real numbers, for the ca ...
algorithms (time domain sensitivities, shooting) and
frequency-domain In physics, electronics, control systems engineering, and statistics, the frequency domain refers to the analysis of mathematical functions or signals with respect to frequency, rather than time. Put simply, a time-domain graph shows how a si ...
algorithms ( harmonic balance) methods, are the best choice for most microwave circuits excited with sinusoidal signals (e.g. mixers, power amplifiers).


Time domain methods

Time domain methods can be further divided into one step methods (time domain sensitivities) and iterative methods (shooting methods). One step methods require derivatives to compute the steady state; whenever those are not readily available at hand, iterative methods come into focus.


See also

*
Frequency response In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. The frequency response is widely used in the design and analysis of s ...
* Stiff circuits * Harmonic balance * Time domain sensitivities *
Shooting method In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem. It involves finding solutions to the initial value problem for different initial conditions until one finds the ...
*
Transient response In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt events but to any event that affec ...


Further reading

* Jan Ogrodsky - Circuit Simulation and Algorithms. CRC Press Electrical engineering {{electric-stub