Crystal filter
   HOME

TheInfoList



OR:

A crystal filter allows some frequencies to 'pass' through an electrical circuit while attenuating undesired frequencies. An electronic filter can use
quartz Quartz is a hard, crystalline mineral composed of silica ( silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical ...
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macro ...
s as resonator components of a filter circuit. Quartz crystals are
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word '' ...
, so their mechanical characteristics can affect electronic circuits (''see''
mechanical filter A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. T ...
). In particular, quartz crystals can exhibit mechanical resonances with a very high Q factor (from 10,000 to 100,000 and greater — far higher than conventional resonators built from inductors and capacitors). The crystal's stability and its high Q factor allow crystal filters to have precise center frequencies and steep
band-pass A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range. Description In electronics and signal processing, a filter is usually a two-po ...
characteristics. Typical crystal filter attenuation in the band-pass is approximately 2-3 dB. Crystal filters are commonly used in
communication Communication (from la, communicare, meaning "to share" or "to be in relation with") is usually defined as the transmission of information. The term may also refer to the message communicated through such transmissions or the field of inqui ...
devices such as radio receivers. Crystal filters are used in the intermediate frequency (IF) stages of high-quality
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmi ...
receivers. They are preferred because they are very stable mechanically and thus have little change in resonant frequency with changes in operating temperature. For the highest available stability applications, crystals are placed in ovens with controlled temperature making operating temperature independent of ambient temperature. Cheaper sets may use ceramic filters built from ceramic resonators (which also exploit the
piezoelectric Piezoelectricity (, ) is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word '' ...
effect) or tuned LC circuits. Very high quality "crystal ladder" filters can be constructed of serial arrays of crystals. The most common use of crystal filters are at frequencies of 9 MHz or 10.7 MHz to provide selectivity in communications receivers, or at higher frequencies as a roofing filter in receivers using up-conversion. The vibrating frequencies of the crystal are determined by its "cut" (physical shape), such as the common AT cut used for crystal filters designed for radio communications. The cut also determines some temperature characteristics, which affect the stability of the resonant frequency, though as quartz has an inherently high temperature stability, its shape does not change much with temperatures found in typical radios. By contrast, less expensive ceramic-based filters are commonly used with a frequency of 10.7 MHz to provide filtering of unwanted frequencies in consumer FM receivers. Additionally, a lower frequency (commonly of 455 kHz) can be used as the second intermediate frequency and have a piezoelectric-based filter. Ceramic filters at 455 kHz can achieve similar narrow bandwidths to crystal filters at 10.7 MHz. The design concept for utilizing quartz crystals as a filtering component was first established by Walter Cady in 1922, but it was largely Warren P. Mason's work in the late 1920s and early 1930s that devised methods for incorporating crystals into LC lattice filter networks which set the groundwork for much of the progress in telephone communications. Crystal filter designs from the 1960s allowed for true
Chebyshev Pafnuty Lvovich Chebyshev ( rus, Пафну́тий Льво́вич Чебышёв, p=pɐfˈnutʲɪj ˈlʲvovʲɪtɕ tɕɪbɨˈʂof) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics. Chebyshe ...
, Butterworth, and other typical filter characteristics. Crystal filter design continued to improve in the 1970s and 1980s with the development of multi-pole monolithic filters, widely used today to provide IF selectivity in communication receivers. Crystal filters can be found today in radio communications,
telecommunication Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that fe ...
s, signal generation, and
GPS The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite sy ...
devices.Kinsman, R. G. (1998). "A History of Crystal Filters". IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. Retrieved from


See also

*
Crystal oscillator A crystal oscillator is an electronic oscillator circuit that uses a piezoelectric crystal as a frequency-selective element. The oscillator frequency is often used to keep track of time, as in quartz wristwatches, to provide a stable clock ...


References

{{DEFAULTSORT:Crystal Filter Linear filters Wireless tuning and filtering Signal processing filter