Cryotron
   HOME

TheInfoList



OR:

The cryotron is a switch that operates using
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
. The cryotron works on the principle that
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s destroy superconductivity. This simple device consists of two superconducting wires (e.g. tantalum and niobium) with different critical temperature (Tc). The cryotron was invented by Dudley Allen Buck of the Massachusetts Institute of Technology Lincoln Laboratory. As described by Buck, a straight wire of
tantalum Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that ...
(having lower Tc) is wrapped around with a wire of
niobium Niobium is a chemical element with chemical symbol Nb (formerly columbium, Cb) and atomic number 41. It is a light grey, crystalline, and ductile transition metal. Pure niobium has a Mohs hardness rating similar to pure titanium, and it has s ...
in a single layer coil. Both wires are electrically isolated from each other. When this device is immersed in a liquid
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic ta ...
bath both wires become superconducting and hence offer no resistance to the passage of electric current. Tantalum in superconducting state can carry large amount of current as compared to its normal state. Now when current is passed through the niobium coil (wrapped around tantalum) it produces a magnetic field, which in turn reduces (kills) the superconductivity of the tantalum wire and hence reduces the amount of the current that can flow through the tantalum wire. Hence one can control the amount of the current that can flow in the straight wire with the help of small current in the coiled wire. We can think of the tantalum straight wire as a "gate" and the coiled niobium as a "control". The article by Buck includes descriptions of several logic circuits implemented using cryotrons, including: one stage of a binary adder, carry network, binary accumulator stage, and two stages of a cryotron stepping register. A planar cryotron using thin films of lead and tin was developed in 1957 by John Bremer at
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable ene ...
's General Engineering Lab in
Schenectady, New York Schenectady () is a city in Schenectady County, New York, United States, of which it is the county seat. As of the 2020 census, the city's population of 67,047 made it the state's ninth-largest city by population. The city is in eastern New Yo ...
. This was one of the first
integrated circuit An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
s, although using superconductors rather than
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way ...
s. In the next few years, a demonstration computer was made and arrays with 2000 devices operated. A short history of this work is in the November 2007 newsletter of the IEEE History Center. Juri Matisoo developed a version of the cryotron incorporating a Josephson junction switched by the magnetic field from a control wire. He also explained the shortcomings of traditional cryotrons in which the superconductive material must transition between superconducting and normal states to switch the device, and thus switch relatively slowly. Matisoo's cryotron switched between a conducting state in which 'pair tunneling' of electrons through the gate took place and a 'resistive' state where only single electrons were able to tunnel. The circuit was (like the traditional cryotron) capable of some amplification (i.e gain greater than unity) had a switching rate of less than 800 picoseconds. Although the requirement for cryogenic cooling limited its practicality, it wasn't until the late 2010s that commercial transistors came close to matching this performance. There have been periods of renewed interest in various types of cryotron. IBM experimented with using them for limited applications in supercomputers during the 1980s, and (as of 2020) there has been some investigation of their potential applications both to I/O and logic in prototype quantum computers.


History

* December 1953 The magnetically controlled switch is proposed in Dudley Allen Buck notebook. * July 1955 Dudley A. Buck application for U.S. Paten
2,832,897
''Magnetically Controlled Gating Element'' * August 1955 Lincoln Laborator
Memorandum 6M-3843
'The Cryotron - A Superconductive Computer Component'' * 195
A Cryotron Catalog Memory System
by Al Slade and Howard McMahon * 1957 James W. Crowe application for U.S. paten

''Superconducting Gating Devices''


Legacy

The Cryotron brought Buck a number of interviews with various news agencies at the time, international scientific renown, and while the work didn't survive Buck's death, many of the techniques for the research of the device would be used at
Intel Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California. It is the world's largest semiconductor chip manufacturer by revenue, and is one of the developers of the x86 ser ...
and other chip manufacturers and in the research of other more modern and interactive computers, especially at MIT.


References

{{Switches Switches American inventions