Covering system
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a covering system (also called a complete residue system) is a collection :\ of finitely many
residue class In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book ...
es a_i(\mathrm\ ) = \ whose union contains every integer.


Examples and definitions

The notion of covering system was introduced by
Paul Erdős Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in ...
in the early 1930s. The following are examples of covering systems: # \, # \, # \. A covering system is called ''disjoint'' (or ''exact'') if no two members overlap. A covering system is called ''distinct'' (or ''incongruent'') if all the moduli n_i are different (and bigger than 1). Hough and Nielsen (2019) proved that any distinct covering system has a modulus that is divisible by either 2 or 3. A covering system is called ''irredundant'' (or ''minimal'') if all the residue classes are required to cover the integers. The first two examples are disjoint. The third example is distinct. A system (i.e., an unordered multi-set) :\ of finitely many residue classes is called an m-cover if it covers every integer at least m times, and an ''exact'' m-cover if it covers each integer exactly m times. It is known that for each m=2,3,\ldots there are exact m-covers which cannot be written as a union of two covers. For example, :\ is an exact 2-cover which is not a union of two covers. The first example above is an exact 1-cover (also called an ''exact cover''). Another exact cover in common use is that of odd and
even number In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 ...
s, or :\. This is just one case of the following fact: For every positive integer modulus m, there is an exact cover: :\.


Mirsky–Newman theorem

The Mirsky–Newman theorem, a special case of the
Herzog–Schönheim conjecture In mathematics, the Herzog–Schönheim conjecture is a combinatorial problem in the area of group theory, posed by Marcel Herzog and Jochanan Schönheim in 1974. Let G be a group, and let :A=\ be a finite system of left cosets of subgroups G_1,\ ...
, states that there is no disjoint distinct covering system. This result was conjectured in 1950 by
Paul Erdős Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in ...
and proved soon thereafter by
Leon Mirsky Leonid Mirsky (19 December 1918 – 1 December 1983) was a Russian-British mathematician who worked in number theory, linear algebra, and combinatorics.... Mirsky's theorem is named after him. Biography Mirsky was born in Russia on 19 December 1 ...
and
Donald J. Newman Donald Joseph (D. J.) Newman (July 27, 1930 – March 28, 2007) was an American mathematician. He gave simple proofs of the prime number theorem and the Hardy-Ramanujan partition formula. He excelled on multiple occasions at the annual Putnam com ...
. However, Mirsky and Newman never published their proof. The same proof was also found independently by
Harold Davenport Harold Davenport FRS (30 October 1907 – 9 June 1969) was an English mathematician, known for his extensive work in number theory. Early life Born on 30 October 1907 in Huncoat, Lancashire, Davenport was educated at Accrington Grammar Schoo ...
and
Richard Rado Richard Rado FRS (28 April 1906 – 23 December 1989) was a German-born British mathematician whose research concerned combinatorics and graph theory. He was Jewish and left Germany to escape Nazi persecution. He earned two PhDs: in 1933 from th ...
.


Primefree sequences

Covering systems can be used to find
primefree sequence In mathematics, a primefree sequence is a sequence of integers that does not contain any prime numbers. More specifically, it usually means a sequence defined by the same recurrence relation as the Fibonacci numbers, but with different initial cond ...
s, sequences of integers satisfying the same
recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter ...
as the
Fibonacci number In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from ...
s, such that consecutive numbers in the sequence are
relatively prime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
but all numbers in the sequence are
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
s. For instance, a sequence of this type found by
Herbert Wilf Herbert Saul Wilf (June 13, 1931 – January 7, 2012) was a mathematician, specializing in combinatorics and graph theory. He was the Thomas A. Scott Professor of Mathematics in Combinatorial Analysis and Computing at the University of Pennsylv ...
has initial terms :''a''1 = 20615674205555510, ''a''2 = 3794765361567513 . In this sequence, the positions at which the numbers in the sequence are divisible by a prime ''p'' form an arithmetic progression; for instance, the even numbers in the sequence are the numbers ''ai'' where ''i'' is congruent to 1 mod 3. The progressions divisible by different primes form a covering system, showing that every number in the sequence is divisible by at least one prime.


Boundedness of the smallest modulus

Paul Erdős Paul Erdős ( hu, Erdős Pál ; 26 March 1913 – 20 September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in ...
asked whether for any arbitrarily large ''N'' there exists an incongruent covering system the minimum of whose moduli is at least ''N''. It is easy to construct examples where the minimum of the moduli in such a system is 2, or 3 (Erdős gave an example where the moduli are in the set of the divisors of 120; a suitable cover is 0(3), 0(4), 0(5), 1(6), 1(8), 2(10), 11(12), 1(15), 14(20), 5(24), 8(30), 6(40), 58(60), 26(120) ) D. Swift gave an example where the minimum of the moduli is 4 (and the moduli are in the set of the divisors of 2880). S. L. G. Choi proved that it is possible to give an example for ''N'' = 20, and Pace P Nielsen demonstrates the existence of an example with ''N'' = 40, consisting of more than 10^ congruences. Erdős's question was resolved in the negative by Bob Hough. Hough used the
Lovász local lemma In probability theory, if a large number of events are all independent of one another and each has probability less than 1, then there is a positive (possibly small) probability that none of the events will occur. The Lovász local lemma allows one ...
to show that there is some maximum ''N''<1016 which can be the minimum modulus on a covering system.


Systems of odd moduli

There is a famous unsolved conjecture from Erdős and Selfridge: an incongruent covering system (with the minimum modulus greater than 1) whose moduli are odd, does not exist. It is known that if such a system exists with square-free moduli, the overall modulus must have at least 22 prime factors.


See also

*
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
*
Covering set In mathematics, a covering set for a sequence of integers refers to a set of prime numbers such that ''every'' term in the sequence is divisible by ''at least one'' member of the set. The term "covering set" is used only in conjunction with seque ...
*
Residue number system A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if is the pro ...


References


External links

*
Zhi-Wei Sun Sun Zhiwei (, born October 16, 1965) is a Chinese mathematician, working primarily in number theory, combinatorics, and group theory. He is a professor at Nanjing University. Biography Sun Zhiwei was born in Huai'an, Jiangsu. Sun and his twi ...

Problems and Results on Covering Systems
(a survey) (
PDF Portable Document Format (PDF), standardized as ISO 32000, is a file format developed by Adobe in 1992 to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. ...
) * Zhi-Wei Sun
Classified Publications on Covering Systems
(PDF) {{dead link, date=December 2022 Unsolved problems in number theory