Counting measure
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically
measure theory In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
, the counting measure is an intuitive way to put a
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
on any
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
– the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity \infty if the subset is
infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
. The counting measure can be defined on any
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
(that is, any set X along with a sigma-algebra) but is mostly used on
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
sets. In formal notation, we can turn any set X into a measurable space by taking the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is po ...
of X as the sigma-algebra \Sigma; that is, all subsets of X are measurable sets. Then the counting measure \mu on this measurable space (X,\Sigma) is the positive measure \Sigma \to ,+\infty/math> defined by \mu(A) = \begin \vert A \vert & \text A \text\\ +\infty & \text A \text \end for all A\in\Sigma, where \vert A\vert denotes the cardinality of the set A. The counting measure on (X,\Sigma) is σ-finite if and only if the space X is
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
.


Discussion

The counting measure is a special case of a more general construction. With the notation as above, any function f : X \to [0, \infty) defines a measure \mu on (X, \Sigma) via \mu(A):=\sum_ f(a)\quad \text A \subseteq X, where the possibly uncountable sum of real numbers is defined to be the supremum of the sums over all finite subsets, that is, \sum_ y\ :=\ \sup_ \left\. Taking f(x) = 1 for all x \in X gives the counting measure.


See also

* *


References

Measures (measure theory) {{DEFAULTSORT:Counting Measure