HOME
The Info List - Corynebacterium





C. accolens C. afermentans C. ammoniagenes C. amycolatum C. argentoratense C. aquaticum C. auris C. bovis C. diphtheriae C. equi (now Rhodococcus equi) C. efficiens C. flavescens C. glucuronolyticum C. glutamicum C. granulosum C. haemolyticum C. halofytica C. kroppenstedtii C. jeikeium (group JK) C. macginleyi C. matruchotii C. minutissimum C. parvum (Propionibacterium acnes) C. paurometabolum C. propinquum C. pseudodiphtheriticum (C. hofmannii) C. pseudotuberculosis (C. ovis) C. pyogenes - Trueperella pyogenes C. urealyticum (group D2) C. renale C. resistens C. spec C. striatum C. tenuis C. ulcerans C. urealyticum C. uropygiale C. xerosis

Corynebacterium
Corynebacterium
(/kɔːrˈaɪnəbækˌtɪəriəm/, /kɔːrˈɪnə-/) is a genus of bacteria that are gram-positive and aerobic. They are bacilli (rod-shaped), and in some phases of life they are, more particularly, club-shaped, which inspired the genus name (coryneform means "club-shaped"). They are widely distributed in nature in the microbiota of animals (including the human microbiota) and are mostly innocuous.[1] Some are useful in industrial settings such as C. glutamicum.[2] Others can cause human disease, including most notably diphtheria, which is caused by C. diphtheriae. As with various species of a microbiota (including their cousins in the genera Arcanobacterium
Arcanobacterium
and Trueperella), they usually are not pathogenic but can occasionally opportunistically capitalize on atypical access to tissues (via wounds) or weakened host defenses.

Contents

1 Taxonomy 2 Genomics 3 Characteristics

3.1 Cell wall 3.2 Culture

4 Habitat 5 Role in disease 6 Industrial uses 7 Species

7.1 Nonlipophilic 7.2 Lipophilic 7.3 Novel corynebacteria that do not contain mycolic acids

8 References 9 Further reading

Taxonomy[edit] The genus Corynebacterium
Corynebacterium
was created by Lehmann and Neumann in 1896 as a taxonomic group to contain the bacterial rods responsible for causing diphtheria. The genus was defined based on morphological characteristics. Based on studies of 16S-rRNA, they have been grouped into the subdivision of gram-positive eubacteria with high G:C content, with close phylogenetic relationship to Arthrobacter, Mycobacterium, Nocardia, and Streptomyces.[3] The term comes from the Greek κορωνη, corönë ("knotted rod") and βακτηριον, bacterion ("rod"). The term "diphtheroids" is used to represent corynebacteria that are nonpathogenic; for example, C. diphtheriae would be excluded.[citation needed] The term diphtheroid comes from Greek διφθερα, diphthera—prepared hide, leather.[citation needed] Genomics[edit] Comparative analysis of corynebacterial genomes has led to the identification of several conserved signature indels which are unique to the genus. Two examples of these conserved signature indels are a two-amino-acid insertion in a conserved region of the enzyme phosphoribose diphosphate:decaprenyl-phosphate phosphoribosyltransferase and a three-amino-acid insertion in acetate kinase, both of which are found only in Corynebacterium
Corynebacterium
species. Both of these indels serve as molecular markers for species of the genus Corynebacterium. Additionally, 16 conserved signature proteins, which are uniquely found in Corynebacterium
Corynebacterium
species, have been identified. Three of the conserved signature proteins have homologs found in the Dietzia genus, which is believed to be the closest related genus to Corynebacterium. In phylogenetic trees based on concatenated protein sequences or 16S rRNA, the genus Corynebacterium
Corynebacterium
forms a distinct clade, within which is a distinct subclade, cluster I. The cluster is made up of the species C. diptheriae, C. pseudotuberculosis, C. ulcerans, C. aurimucosum, C. glutamicum, and C. efficiens. This cluster is distinguished by several conserved signature indels, such as a two-amino-acid insertion in LepA and a seven- or eight-amino-acid insertions in RpoC. Also, 21 conserved signature proteins are found only in members of cluster I. Another cluster has been proposed, consisting of C. jeikeium and C. urealyticum, which is supported by the presence of 19 distinct conserved signature proteins which are unique to these two species.[4] Corynebateria have a high G+C content ranging from 46-74 mol%.[5] Characteristics[edit] The principal features of the Corynebacterium
Corynebacterium
genus were described by Collins and Cummins in 1986.[6] They are gram-positive, catalase-positive, nonspore-forming, nonmotile, rod-shaped bacteria that are straight or slightly curved.[7] Metachromatic granules are usually present representing stored phosphate regions. Their size falls between 2 and 6 μms in length and 0.5 μm in diameter. The bacteria group together in a characteristic way, which has been described as the form of a "V", "palisades", or "Chinese letters". They may also appear elliptical. They are aerobic or facultatively anaerobic, chemoorganotrophs. They are pleomorphic through their lifecycles, they occur in various lengths, and they frequently have thickenings at either end, depending on the surrounding conditions.[8] Cell wall[edit] The cell wall is distinctive, with a predominance of mesodiaminopimelic acid in the murein wall[1][7] and many repetitions of arabinogalactan, as well as corynemycolic acid (a mycolic acid with 22 to 26 carbon atoms), bound by disaccharide bonds called L-Rhap-(1 → 4)--D-GlcNAc-phosphate. These form a complex commonly seen in Corynebacterium
Corynebacterium
species: the mycolyl-AG–peptidoglican (mAGP).[9] Culture[edit] Corynebacteria grow slowly, even on enriched media. In terms of nutritional requirements, all need biotin to grow. Some strains also need thiamine and PABA.[6] Some of the Corynebacterium
Corynebacterium
species with sequenced genomes have between 2.5 and 3.0 million base pairs. The bacteria grow in Loeffler's medium, blood agar, and trypticase soy agar (TSA). They form small, grayish colonies with a granular appearance, mostly translucent, but with opaque centers, convex, with continuous borders.[7] The color tends to be yellowish-white in Loeffler's medium. In TSA, they can form grey colonies with black centers and dentated borders that look similar to flowers (C. gravis), or continuous borders (C. mitis), or a mix between the two forms (C. intermedium). Habitat[edit] Corynebacterium
Corynebacterium
species occur commonly in nature in the soil, water, plants, and food products.[1][7] The nondiphtheiroid Corynebacterium species can even be found in the mucosa and normal skin flora of humans and animals.[1][7] Unusual habitats, such as the preen gland of birds have been recently reported for Corynebacterium
Corynebacterium
uropygiale.[10] Some species are known for their pathogenic effects in humans and other animals. Perhaps the most notable one is C. diphtheriae, which acquires the capacity to produce diphtheria toxin only after interacting with a bacteriophage.[11] Other pathogenic species in humans include: C. amicolatum, C. striatum, C. jeikeium, C. urealyticum, and C. xerosis;[12][13][14][15][16] all of these are important as pathogens in immunosuppressed patients. Pathogenic species in other animals include C. bovis and C. renale.[17] This genus has been found to be part of the human salivary microbiome.[18] Role in disease[edit] Main article: Diphtheria The most notable human infection is diphtheria, caused by C. diphtheriae. It is an acute and contagious infection characterized by pseudomembranes of dead epithelial cells, white blood cells, red blood cells, and fibrin that form around the tonsils and back of the throat.[19] In developed countries, it is an uncommon illness that tends to occur in unvaccinated individuals, especially school-aged children, elderly, neutropenic or immunocompromised patients, and those with prosthetic devices such as prosthetic heart valves, shunts, or catheters. It is more common in developing countries[20] It can occasionally infect wounds, the vulva, the conjunctiva, and the middle ear. It can be spread within a hospital.[21] The virulent and toxigenic strains are lysogenic, and produce an exotoxin formed by two polypeptide chains, which is itself produced when a bacterium is transformed by a gene from the β prophage.[11] Several species cause disease in animals, most notably C. pseudotuberculosis, which causes the disease caseous lymphadenitis, and some are also pathogenic in humans. Some attack healthy hosts, while others tend to attack the immunocompromised. Effects of infection include granulomatous lymphadenopathy, pneumonitis, pharyngitis, skin infections, and endocarditis. Corynebacterial endocarditis is seen most frequently in patients with intravascular devices.[22] C. tenuis is believed to cause trichomycosis palmellina and trichomycosis axillaris.[23] C. striatum may cause axillary odor.[24] C. minutissimum causes erythrasma. Industrial uses[edit] Nonpathogenic species of Corynebacterium
Corynebacterium
are used for very important industrial applications, such as the production of amino acids,[25][26] nucleotides, and other nutritional factors (Martín, 1989); bioconversion of steroids;[27] degradation of hydrocarbons;[28] cheese aging;[29] and production of enzymes.[30] Some species produce metabolites similar to antibiotics: bacteriocins of the corynecin-linocin type,[21][31][32] antitumor agents,[33] etc. One of the most studied species is C. glutamicum, whose name refers to its capacity to produce glutamic acid in aerobic conditions.[34] This is used in the food industry as monosodium glutamate in the production of soy sauce and yogurt.[citation needed] Species
Species
of Corynebacterium
Corynebacterium
have been used in the mass production of various amino acids including glutamic acid, a food additive that is made at a rate of 1.5 million tons/ year. The metabolic pathways of Corynebacterium
Corynebacterium
have been further manipulated to produce lysine and threonine.[citation needed] L-Lysine
L-Lysine
production is specific to C. glutamicum in which core metabolic enzymes are manipulated through genetic engineering to drive metabolic flux towards the production of NADPH from the pentose phosphate pathway, and L-4-aspartyl phosphate, the commitment step to the synthesis of L-lysine, lysC, dapA, dapC, and dapF. These enzymes are up-regulated in industry through genetic engineering to ensure adequate amounts of lysine precursors are produced to increase metabolic flux. Unwanted side reactions such as threonine and asparagine production can occur if a buildup of intermediates occurs, so scientists have developed mutant strains of C. glutamicum through PCR engineering and chemical knockouts to ensure production of side-reaction enzymes are limited. Many genetic manipulations conducted in industry are by traditional cross-over methods or inhibition of transcriptional activators.[35] Expression of functionally active human epidermal growth factor has been brought about in C. glutamicum,[36] thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general secretory pathway or the twin-arginine translocation pathway.[37] Unlike gram-negative bacteria, the gram-positive Corynebacterium species lack lipopolysaccharides that function as antigenic endotoxins in humans.[citation needed] Species[edit]

Corynebacterium
Corynebacterium
efficiens

Most species of corynebacteria are not lipophilic.[citation needed] Nonlipophilic[edit] The nonlipophilic bacteria may be classified as fermentative and nonfermentative:

Fermentative corynebacteria

Corynebacterium diphtheriae
Corynebacterium diphtheriae
group Corynebacterium
Corynebacterium
xerosis and Corynebacterium
Corynebacterium
striatum Corynebacterium
Corynebacterium
minutissimum Corynebacterium
Corynebacterium
amycolatum Corynebacterium
Corynebacterium
glucuronolyticum Corynebacterium
Corynebacterium
argentoratense Corynebacterium
Corynebacterium
matruchotii Corynebacterium
Corynebacterium
glutamicum Corynebacterium
Corynebacterium
sp.[38]

Nonfermentative corynebacteria

Corynebacterium
Corynebacterium
afermentans subsp. afermentans Corynebacterium
Corynebacterium
auris Corynebacterium
Corynebacterium
pseudodiphtheriticum Corynebacterium
Corynebacterium
propinquum[38]

Lipophilic[edit]

Corynebacterium
Corynebacterium
uropygiale[10] Corynebacterium
Corynebacterium
jeikeium Corynebacterium
Corynebacterium
urealyticum Corynebacterium
Corynebacterium
afermentans subsp. lipophilum Corynebacterium
Corynebacterium
accolens Corynebacterium
Corynebacterium
macginleyi CDC coryneform groups F-1 and G Corynebacterium
Corynebacterium
bovis[38]

Novel corynebacteria that do not contain mycolic acids[edit]

Corynebacterium
Corynebacterium
kroppenstedtii[39]

References[edit]

^ a b c d Collins, M. D. (2004). " Corynebacterium
Corynebacterium
caspium sp. nov., from a Caspian seal (Phoca caspica)". International Journal of Systematic and Evolutionary Microbiology. 54 (3): 925–8. doi:10.1099/ijs.0.02950-0. PMID 15143043.  ^ Burkovski A (editor). (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 1-904455-30-1. [page needed] ^ Woese, C. R. (1987). "Bacterial evolution". Microbiological Reviews. 51 (2): 221–71. PMC 373105 . PMID 2439888.  ^ Gao, B.; Gupta, R. S. (2012). "Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria". Microbiology and Molecular Biology Reviews. 76 (1): 66–112. doi:10.1128/MMBR.05011-11. PMC 3294427 . PMID 22390973.  ^ Bernard, K.A.; Funke, G. (2012). " Genus
Genus
I. Corynebacterium". In Goodfellow, M.; Kampfer, P.; Busse, H.J.; Trujillo, M.E.; Suzuki, K.; Ludwig, W.; Whitman, W.B. Bergey's Manual of Systematic Bacteriology (2nd ed.). Springer. p. 245.  ^ a b Collins, M. D.; Cummins, C. S. (1986). " Genus
Genus
Corynebacterium Lehmann and Neumann 1896, 350AL". In Sneath, P. H. A.; Mair, N. S.; Sharpe, M. E.; Holt, J. G. Bergey's Manual of Systematic Bacteriology. 2. Baltimore: Williams & Wilkins. pp. 1266–76.  ^ a b c d e Yassin, A. F. (2003). " Corynebacterium
Corynebacterium
glaucum sp. nov". International Journal of Systematic and Evolutionary Microbiology. 53 (3): 705–9. doi:10.1099/ijs.0.02394-0. PMID 12807190.  ^ Keddie, R. M.; Cure, G. L. (1977). "The Cell Wall Composition and Distribution of Free Mycolic Acids in Named Strains of Coryneform Bacteria
Bacteria
and in Isolates from Various Natural Sources". Journal of Applied Bacteriology. 42 (2): 229–52. doi:10.1111/j.1365-2672.1977.tb00689.x. PMID 406255.  ^ Seidel, M.; Alderwick, L. J.; Sahm, H.; Besra, G. S.; Eggeling, L. (2006). "Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum
Corynebacterium glutamicum
as a model of Emb proteins of Mycobacterium
Mycobacterium
tuberculosis". Glycobiology. 17 (2): 210–9. doi:10.1093/glycob/cwl066. PMID 17088267.  ^ a b Braun, Markus Santhosh; Zimmermann, Stefan; Danner, Maria; Rashid, Harun-or; Wink, Michael (2016). " Corynebacterium
Corynebacterium
uropygiale sp. nov., isolated from the preen gland of Turkeys (Meleagris gallopavo)". Systematic and Applied Microbiology. 39 (2): 88–92. doi:10.1016/j.syapm.2015.12.001. PMID 26776107.  ^ a b Costa, J. J.; Michel, J. L.; Rappuoli, R; Murphy, J. R. (1981). "Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon". Journal of Bacteriology. 148 (1): 124–30. PMC 216174 . PMID 6270058.  ^ Oteo, Jesús; Aracil, Belén; Ignacio Alós, Juan; Luis Gómez-Garcés, Jose (2001). "Bacteriemias significativas por Corynebacterium
Corynebacterium
amycolatum: Un patógeno emergente" [Significant bacteremias by Corynebacterium
Corynebacterium
amycolatum: an emergent pathogen]. Enfermedades Infecciosas y Microbiología Clínica (in Spanish). 19 (3): 103–6. doi:10.1016/S0213-005X(01)72578-5. PMID 11333587.  ^ Lagrou, K; Verhaegen, J; Janssens, M; Wauters, G; Verbist, L (1998). "Prospective Study of Catalase-positive Coryneform Organisms in Clinical Specimens: Identification, Clinical Relevance, and Antibiotic Susceptibility". Diagnostic Microbiology and Infectious Disease. 30 (1): 7–15. doi:10.1016/S0732-8893(97)00193-4. PMID 9488824.  ^ Boc, SF; Martone, JD (1995). "Osteomyelitis caused by Corynebacterium
Corynebacterium
jeikeium". Journal of the American Podiatric Medical Association. 85 (6): 338–9. doi:10.7547/87507315-85-6-338. PMID 7602508.  ^ Kono, M.; Sasatsu, M.; Aoki, T. (1983). "R Plasmids in Corynebacterium
Corynebacterium
xerosis Strains". Antimicrobial Agents and Chemotherapy. 23 (3): 506–8. doi:10.1128/aac.23.3.506. PMC 184682 . PMID 6847177.  ^ Pitcher, D.G. (1983). "Deoxyribonucleic acid base composition of Corynebacterium
Corynebacterium
diphtheriaeand other corynebacteria with cell wall type IV". FEMS Microbiology Letters. 16 (2–3): 291–5. doi:10.1111/j.1574-6968.1983.tb00305.x.  ^ Hirsbrunner, G; Lang, J; Nicolet, J; Steiner, A (1996). "Nephrektomie nach chronischer, unilateraler, eitriger Pyelonephritis beim Rind" [Nephrectomy for chronic, unilateral suppurative pyleonephritis in cattle]. Tierarztliche Praxis (in German). 24 (1): 17–21. PMID 8720950.  ^ Wang, Kun; Lu, Wenxin; Tu, Qichao; Ge, Yichen; He, Jinzhi; Zhou, Yu; Gou, Yaping; Nostrand, Joy D Van; Qin, Yujia; Li, Jiyao; Zhou, Jizhong; Li, Yan; Xiao, Liying; Zhou, Xuedong (10 March 2016). "Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus". Scientific Reports. 6 (1). doi:10.1038/srep22943. PMC 4785528 . PMID 26961389. Retrieved 6 May 2017.  ^ "Difteria: MedlinePlus enciclopedia médica". www.nlm.nih.gov.  ^ Iizuka, Hideyo; Furuta, Joana Akiko; Oliveira, Edison P. Tavares de (1980). "Difteria: Situação imunitária de uma população infantil urbana de São Paulo, SP, Brasil" [Diphtheria. Immunity in an infant population in the City of S. Paulo, SP, Brazil]. Revista de Saúde Pública (in Portuguese). 14 (4): 462–8. doi:10.1590/S0034-89101980000400005.  ^ a b Kerry-Williams, S. M.; Noble, W. C. (2009). "Plasmids in group JK coryneform bacteria isolated in a single hospital". Journal of Hygiene. 97 (2): 255–63. doi:10.1017/S0022172400065347. PMC 2083551 . PMID 3023480.  ^ León, Cristóbal; Ariza, Javier (2004). "Guías para el tratamiento de las infecciones relacionadas con catéteres intravasculares de corta permanencia en adultos: Conferencia de consenso SEIMC-SEMICYUC" [Guidelines for the treatment of infections related to short-stay intravascular catheters in adults: consensus conference SEIMC-SEMICYUC]. Enfermedades Infecciosas y Microbiología Clínica (in Spanish). 22 (2): 92–7. doi:10.1157/13056889.  ^ Trichomycosis axilarris at eMedicine ^ Natsch, A.; Gfeller, H.; Gygax, P.; Schmid, J. (2005). "Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1". International Journal of Cosmetic Science. 27 (2): 115–22. doi:10.1111/j.1467-2494.2004.00255.x. PMID 18492161.  ^ Hongo, M.; Oki, T.; Ogata, S. (1972). "Phage contamination and control". In Yamada, K.; Kinoshita, S; Tsunoda, T.; Aida, K. The Microbial Production of Amino Acids. New York: John Wiley. pp. 63–83.  ^ Yamada, K.; Kinoshita, S.; Tsunoda, T.; Aida, K., eds. (1972). The Microbial Production of Amino Acids. New York: Wiley. [page needed] ^ Constantinides, Alkis (1980). " Steroid
Steroid
transformation at high substrate concentrations using immobilized Corynebacterium
Corynebacterium
simplex cells". Biotechnology and Bioengineering. 22 (1): 119–36. doi:10.1002/bit.260220110. PMID 7350926.  ^ Cooper, D. G.; Zajic, J. E.; Gracey, D. E. (1979). "Analysis of corynomycolic acids and other fatty acids produced by Corynebacterium lepus grown on kerosene". Journal of Bacteriology. 137 (2): 795–801. PMC 218359 . PMID 422512.  ^ Lee, Chang-Won; Lucas, Serge; Desmazeaud, Michel J. (1985). "Phenylalanine and tyrosine catabolism in some cheese coryneform bacteria". FEMS Microbiology Letters. 26 (2): 201–5. doi:10.1111/j.1574-6968.1985.tb01591.x.  ^ Khurana, Sumit; Sanli, Gulsah; Powers, David B.; Anderson, Stephen; Blaber, Michael (2000). "Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases". Proteins: Structure, Function, and Genetics. 39 (1): 68–75. doi:10.1002/(SICI)1097-0134(20000401)39:1<68::AID-PROT7>3.0.CO;2-Y. PMID 10737928.  ^ Kerry-Williams, S.M.; Noble, W.C. (1984). "Plasmid-associated bacteriocin production in a JK-type coryneform bacterium". FEMS Microbiology Letters. 25 (2–3): 179–82. doi:10.1111/j.1574-6968.1984.tb01451.x.  ^ Suzuki, Takeo; Honda, Haruo; Katsumata, Ryoichi (1972). "Production of Antibacterial Compounds Analogous to Chloramphenicol by a n-Paraffin-grown Bacterium". Agricultural and Biological Chemistry. 36 (12): 2223–8. doi:10.1271/bbb1961.36.2223.  ^ Milas, Luka; Scott, Martin T. (1978). "Antitumor Activity of Corynebacterium
Corynebacterium
Parvum". In Ford, Marvella E.; Watson, Dennis K. Advances in Cancer Research. 26. pp. 257–306. doi:10.1016/S0065-230X(08)60090-1. ISBN 978-0-12-809878-3. PMID 343523.  ^ Abe, Shigeo; Takayama, KEN-Ichiro; Kinoshita, Shukuo (1967). "Taxonomical Studies on Glutamic Acid-Producing Bacteria". The Journal of General and Applied Microbiology. 13 (3): 279–301. doi:10.2323/jgam.13.279.  ^ Kjeldsen, Kjeld Raunkjær (2009). Optimization of an industrial L-lysine producing Corynebacterium glutamicum
Corynebacterium glutamicum
strain (PhD Thesis). Technical University of Denmark. OCLC 826400572. [page needed] ^ Date, M.; Itaya, H.; Matsui, H.; Kikuchi, Y. (2006). "Secretion of human epidermal growth factor by Corynebacterium
Corynebacterium
glutamicum". Letters in Applied Microbiology. 42 (1): 66–70. doi:10.1111/j.1472-765X.2005.01802.x. PMID 16411922.  ^ Meissner, Daniel; Vollstedt, Angela; Van Dijl, Jan Maarten; Freudl, Roland (2007). "Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria". Applied Microbiology and Biotechnology. 76 (3): 633–42. doi:10.1007/s00253-007-0934-8. PMID 17453196.  ^ a b c Funke, G; von Graevenitz, A; Clarridge Je, 3rd; Bernard, K. A. (1997). "Clinical microbiology of coryneform bacteria". Clinical Microbiology Reviews. 10 (1): 125–59. PMC 172946 . PMID 8993861.  ^ Collins, M. D.; Falsen, E.; Akervall, E.; Sjoden, B.; Alvarez, A. (1998). "Note: Corynebacterium
Corynebacterium
kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acids". International Journal of Systematic Bacteriology. 48 (4): 1449–54. doi:10.1099/00207713-48-4-1449. PMID 9828448. 

Wikispecies
Wikispecies
has information related to Corynebacterium

Further reading[edit]

Burkovski, Andreas, ed. (2008). Corynebacteria: Genomics and Molecular Biology. Caister Academic Press. ISBN 1-904455-30-1.  Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9. CS1 maint: Extra text: authors list (link) Database of Corynebacterial Transcription Factors and Regulatory Networks Rollins, David M. University of Maryland: Pathogentic Microbiology: Corynebacterium
Corynebacterium
[1]

v t e

Prokaryotes: Bacteria
Bacteria
classification (phyla and orders)

Domain Archaea Bacteria Eukaryota (Supergroup Plant Hacrobia Heterokont Alveolata Rhizaria Excavata Amoebozoa Opisthokonta

Animal Fungi)

G-/ OM

Terra-/ Glidobacteria (BV1)

Eobacteria

Deinococcus–Thermus

Deinococcales Thermales

Chloroflexi

Anaerolineales Caldilineales Chloroflexales Herpetosiphonales Dehalococcoidales Ktedonobacterales Thermogemmatisporales Thermomicrobiales Sphaerobacterales

other glidobacteria

Thermodesulfobacteria thermophiles

Aquificae Thermotogae

Cyanobacteria

Proteobacteria (BV2)

Alpha

Caulobacterales Kiloniellales Kordiimonadales Magnetococcales Parvularculales Rhizobiales Rhodobacterales Rhodospirillales Rickettsiales Sneathiellales Sphingomonadales

Beta

Burkholderiales Hydrogenophilales Methylophilales Neisseriales Nitrosomonadales Procabacteriales Rhodocyclales

Gamma

Acidithiobacillales Aeromonadales Alteromonadales Cardiobacteriales Chromatiales Enterobacteriales Legionellales Methylococcales Oceanospirillales Orbales Pasteurellales Pseudomonadales Salinisphaerales Thiotrichales Vibrionales Xanthomonadales

Delta

Bdellovibrionales Desulfarculales Desulfobacterales Desulfovibrionales Desulfurellales Desulfuromonadales Myxococcales Syntrophobacterales Syntrophorhabdales

Epsilon

Campylobacterales Nautiliales

Zeta

Mariprofundales

BV4

Spirochaetes

Spirochaetes

Sphingobacteria (FCB group)

Fibrobacteres Chlorobi

Chlorobiales Ignavibacteriales

Bacteroidetes

Bacteroidales Cytophagales Flavobacteriales Sphingobacteriales

Planctobacteria/ (PVC group)

Chlamydiae Lentisphaerae

Lentisphaerales Oligosphaerales Victivallales

Planctomycetes

Phycisphaerales Planctomycetales

Verrucomicrobia

Puniceicoccales Opitutales Chthoniobacterales Verrucomicrobiales

"Poribacteria"

Other GN

Acidobacteria

Acidobacteriales Acanthopleuribacterales Holophagales Solibacterales

Armatimonadetes

Armatimonadales Chthonomonadales Fimbriimonadales

Caldiserica Chrysiogenetes Deferribacteres Dictyoglomi Elusimicrobia Fusobacteria Gemmatimonadetes Nitrospirae Synergistetes

G+/ no OM

Firmicutes (BV3)

Bacilli

Bacillales Lactobacillales

Clostridia

Clostridiales Halanaerobiales Thermoanaerobacteriales Natranaerobiales

Erysipelotrichia

Erysipelotrichiales

Thermolithobacteria

Thermolithobacterales

Tenericutes/ Mollicutes

Mycoplasmatales Entomoplasmatales Anaeroplasmatales Acholeplasmatales Haloplasmatales

Negativicutes

Selenomonadales

Actinobacteria (BV5)

Actinobacteria

Actinomycetales Bifidobacteriales

Acidimicrobiia

Acidimicrobiales

Coriobacteriidae

Coriobacteriales

Nitriliruptoria

Euzebyales Nitriliruptorales

Rubrobacteria

Gaiellales Rubrobacterales Thermoleophilales Solirubrobacterales

Incertae sedis

†Archaeosphaeroides †Eobacterium †Leptotrichites

Source: Bergey's Manual (2001–2012). Alternative views: Wikispecies.

v t e

Gram-positive bacterial infection: Actinobacteria
Actinobacteria
(primarily A00–A79, 001–041, 080–109)

Actinomycineae

Actinomycetaceae

Actinomyces israelii

Actinomycosis Cutaneous actinomycosis

Tropheryma whipplei

Whipple's disease

Arcanobacterium
Arcanobacterium
haemolyticum

Arcanobacterium
Arcanobacterium
haemolyticum infection

Actinomyces gerencseriae

Propionibacteriaceae

Propionibacterium acnes

Corynebacterineae

Mycobacteriaceae

M. tuberculosis/ M. bovis

Tuberculosis: Ghon focus/Ghon's complex Pott disease brain

Meningitis Rich focus

Tuberculous lymphadenitis

Tuberculous cervical lymphadenitis

cutaneous

Scrofuloderma Erythema induratum Lupus vulgaris Prosector's wart Tuberculosis
Tuberculosis
cutis orificialis Tuberculous cellulitis Tuberculous gumma

Lichen scrofulosorum Tuberculid

Papulonecrotic tuberculid

Primary inoculation tuberculosis Miliary Tuberculous pericarditis Urogenital tuberculosis Multi-drug-resistant tuberculosis Extensively drug-resistant tuberculosis

M. leprae

Leprosy: Tuberculoid leprosy Borderline tuberculoid leprosy Borderline leprosy Borderline lepromatous leprosy Lepromatous leprosy Histoid leprosy

Nontuberculous

R1:

M. kansasii M. marinum

Aquarium granuloma

R2:

M. gordonae

R3:

M. avium complex/ Mycobacterium
Mycobacterium
avium/ Mycobacterium
Mycobacterium
intracellulare/MAP

MAI infection

M. ulcerans

Buruli ulcer

M. haemophilum

R4/RG:

M. fortuitum M. chelonae M. abscessus

Nocardiaceae

Nocardia
Nocardia
asteroides/ Nocardia
Nocardia
brasiliensis

Nocardiosis

Rhodococcus equi

Corynebacteriaceae

Corynebacterium
Corynebacterium
diphtheriae

Diphtheria

Corynebacterium
Corynebacterium
minutissimum

Erythrasma

Corynebacterium
Corynebacterium
jeikeium

Group JK corynebacterium sepsis

Bifidobacteriaceae

Gardnerella vaginalis

Biology portal

Taxon identifiers

Wd: Q133976 EoL: 83365 EPPO: 1CORBG GBIF: 3224364 ITIS: 383 NCBI: 1716 W

.