Cortisol
   HOME

TheInfoList



OR:

Cortisol is a steroid hormone, in the glucocorticoid class of hormones. When used as a medication, it is known as hydrocortisone. It is produced in many animals, mainly by the '' zona fasciculata'' of the adrenal cortex in the
adrenal gland The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex ...
. It is produced in other tissues in lower quantities. It is released with a diurnal cycle and its release is increased in response to stress and low blood-glucose concentration. It functions to increase blood sugar through gluconeogenesis, to suppress the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
, and to aid in the
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run ...
of fat,
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
, and
carbohydrates In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or m ...
. It also decreases bone formation. Many of these functions are carried out by cortisol binding to glucocorticoid or mineralocorticoid receptors inside the cell, which then bind to DNA to impact gene expression.


Health effects


Metabolic response


Metabolism of glucose

In general, cortisol stimulates gluconeogenesis (the synthesis of 'new' glucose from non-carbohydrate sources, which occurs mainly in the
liver The liver is a major organ only found in vertebrates which performs many essential biological functions such as detoxification of the organism, and the synthesis of proteins and biochemicals necessary for digestion and growth. In humans, it i ...
, but also in the
kidney The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; blo ...
s and small intestine under certain circumstances). The net effect is an increase in the concentration of glucose in the blood, further complemented by a decrease in the sensitivity of peripheral tissue to
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism ...
, thus preventing this tissue from taking the glucose from the blood. Cortisol has a permissive effect on the actions of hormones that increase glucose production, such as glucagon and adrenaline. Cortisol also plays an important, but indirect, role in liver and muscle glycogenolysis (the breaking down of glycogen to glucose-1-phosphate and glucose) which occurs as a result of the action of glucagon and adrenaline. Additionally, cortisol facilitates the activation of glycogen phosphorylase, which is necessary for adrenaline to have an effect on glycogenolysis. Paradoxically, cortisol promotes not only gluconeogenesis in the liver, but also glycogenesis. Cortisol is thus better thought of as stimulating glucose/glycogen turnover in the liver. This is in contrast to cortisol's effect in the skeletal muscle where glycogenolysis is promoted indirectly through
catecholamines A catecholamine (; abbreviated CA) is a monoamine neurotransmitter, an organic compound that has a catechol (benzene with two hydroxyl side groups next to each other) and a side-chain amine. Catechol can be either a free molecule or a subs ...
.


Metabolism of proteins and lipids

Elevated levels of cortisol, if prolonged, can lead to proteolysis (breakdown of proteins) and muscle wasting. The reason for proteolysis is to provide the relevant tissue with a feedstock for gluconeogenesis; see
glucogenic amino acid A glucogenic amino acid (or glucoplastic amino acid) is an amino acid that can be converted into glucose through gluconeogenesis. This is in contrast to the ketogenic amino acids, which are converted into ketone bodies. The production of glucos ...
s. The effects of cortisol on lipid metabolism are more complicated since
lipogenesis In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride s ...
is observed in patients with chronic, raised circulating glucocorticoid (i.e. cortisol) levels, although an acute increase in circulating cortisol promotes lipolysis. The usual explanation to account for this apparent discrepancy is that the raised blood glucose concentration (through the action of cortisol) will stimulate
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism ...
release. Insulin stimulates lipogenesis, so this is an indirect consequence of the raised cortisol concentration in the blood but it will only occur over a longer time scale.


Immune response

Cortisol prevents the release of substances in the body that cause
inflammation Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
. It is used to treat conditions resulting from overactivity of the B-cell-mediated antibody response. Examples include inflammatory and
rheumatoid Rheumatism or rheumatic disorders are conditions causing chronic, often intermittent pain affecting the joints or connective tissue. Rheumatism does not designate any specific disorder, but covers at least 200 different conditions, including art ...
diseases, as well as allergies. Low-dose topical hydrocortisone, available as a nonprescription medicine in some countries, is used to treat skin problems such as rashes and
eczema Dermatitis is inflammation of the skin, typically characterized by itchiness, redness and a rash. In cases of short duration, there may be small blisters, while in long-term cases the skin may become thickened. The area of skin involved c ...
. Cortisol inhibits production of interleukin 12 (IL-12),
interferon gamma Interferon gamma (IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock ...
(IFN-gamma), IFN-alpha, and
tumor necrosis factor alpha Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homolo ...
(TNF-alpha) by
antigen-presenting cells An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes usin ...
(APCs) and T helper cells (Th1 cells), but upregulates interleukin 4,
interleukin 10 Interleukin 10 (IL-10), also known as human cytokine synthesis inhibitory factor (CSIF), is an anti- inflammatory cytokine. In humans, interleukin 10 is encoded by the ''IL10'' gene. IL-10 signals through a receptor complex consisting of two IL-10 ...
, and interleukin 13 by Th2 cells. This results in a shift toward a Th2 immune response rather than general immunosuppression. The activation of the stress system (and resulting increase in cortisol and Th2 shift) seen during an infection is believed to be a protective mechanism which prevents an over-activation of the inflammatory response. Cortisol can weaken the activity of the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
. It prevents proliferation of T-cells by rendering the interleukin-2 producer T-cells unresponsive to interleukin-1, and unable to produce the T-cell growth factor IL-2. Cortisol downregulates the expression of the IL2 receptor IL-2R on the surface of the helper T-cell which is necessary to induce a Th1 'cellular' immune response, thus favoring a shift towards Th2 dominance and the release of the cytokines listed above which results in Th2 dominance and favors the 'humoral' B-cell mediated antibody immune response). Cortisol also has a negative-feedback effect on IL-1. The way this negative feedback works is that an immune stressor causes peripheral immune cells to release IL-1 and other other cytokines such as IL-6 and TNF-alpha. These cytokines stimulate the hypothalamus, causing it to release corticotropin-releasing hormone (CRH). CRH in turn stimulates the production of adrenocorticotropic hormone (ACTH) among other things in the adrenal gland, which (among other things) increases production of cortisol. Cortisol then closes the loop as it inhibits TNF-alpha production in immune cells and makes them less responsive to IL-1. Through this system, as long as an immune stressor is small, the response will be regulated to the correct level. Like a thermostat controlling a heater, the hypothalamus uses cortisol to turn off the heat once the production of cortisol matches the stress induced on the immune system. But in a severe infection or in a situation where the immune system is overly sensitized to an antigen (such as in allergic reactions) or there is a massive flood of antigens (as can happen with endotoxic bacteria) the correct set point might never be reached. Also because of downregulation of Th1 immunity by cortisol and other
signaling molecules In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular ...
, certain types of infection, (notably Mycobacterium tuberculosis) can trick the body into getting locked in the wrong mode of attack, using an antibody-mediated humoral response when a cellular response is needed. Lymphocytes are the antibody-producing cells of the body, and are thus the main agents of humoral immunity. A larger number of lymphocytes in the lymph nodes, bone marrow, and skin means the body is increasing its humoral immune response. Lymphocytes release antibodies into the bloodstream. These antibodies lower infection through three main pathways: neutralization,
opsonization Opsonins are extracellular proteins that, when bound to substances or cells, induce phagocytes to phagocytose the substances or cells with the opsonins bound. Thus, opsonins act as tags to label things in the body that should be phagocytosed (i.e. ...
, and
complement activation The complement system, also known as complement cascade, is a part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microbes and damaged cells from an organism, promote inflammation, and at ...
. Antibodies neutralize pathogens by binding to surface adhering proteins, keeping pathogens from binding to host cells. In opsonization, antibodies bind to the pathogen and create a target for phagocytic immune cells to find and latch onto, allowing them to destroy the pathogen more easily. Finally antibodies can also activate complement molecules which can combine in various ways to promote opsonization or even act directly to lyse a bacteria. There are many different kinds of antibody and their production is highly complex, involving several types of lymphocyte, but in general lymphocytes and other antibody regulating and producing cells will migrate to the lymph nodes to aid in the release of these antibodies into the bloodstream. Rapid administration of
corticosterone Corticosterone, also known as 17-deoxycortisol and 11β,21-dihydroxyprogesterone, is a 21-carbon steroid hormone of the corticosteroid type produced in the cortex of the adrenal glands. It is of minor importance in humans, except in the very rar ...
(the endogenous type I and type II receptor agonist) or RU28362 (a specific type II receptor agonist) to adrenalectomized animals induced changes in leukocyte distribution. On the other side of things, there are
natural killer cell Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and repre ...
s; these cells are equipped with the heavy artillery needed to take down larger in size threats like bacteria, parasites, and tumor cells. A separate study found that cortisol effectively disarmed natural killer cells, downregulating the expression of their natural cytotoxicity receptors. Interestingly,
prolactin Prolactin (PRL), also known as lactotropin, is a protein best known for its role in enabling mammals to produce milk. It is influential in over 300 separate processes in various vertebrates, including humans. Prolactin is secreted from the pi ...
has the opposite effect. It increases the expression of cytotoxicity receptors on natural killer cells, increasing their firepower. Cortisol stimulates many copper enzymes (often to 50% of their total potential), including
lysyl oxidase Lysyl oxidase (LOX), also known as protein-lysine 6-oxidase, is an enzyme that, in humans, is encoded by the ''LOX'' gene. It catalyzes the conversion of lysine molecules into highly reactive aldehydes that form cross-links in extracellular ma ...
, an enzyme that cross-links
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
and
elastin Elastin is a protein that in humans is encoded by the ''ELN'' gene. Elastin is a key component of the extracellular matrix in gnathostomes (jawed vertebrates). It is highly elastic and present in connective tissue allowing many tissues in the bo ...
. Especially valuable for immune response is cortisol's stimulation of the
superoxide dismutase Superoxide dismutase (SOD, ) is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide () radical into ordinary molecular oxygen (O2) and hydrogen peroxide (). Superoxide is produced as a by-product of oxygen ...
, since this copper enzyme is almost certainly used by the body to permit superoxides to poison bacteria.


Other effects


Metabolism


Glucose

Cortisol counteracts
insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the ''INS'' gene. It is considered to be the main anabolic hormone of the body. It regulates the metabolism ...
, contributes to
hyperglycemia Hyperglycemia is a condition in which an excessive amount of glucose circulates in the blood plasma. This is generally a blood sugar level higher than 11.1  mmol/L (200  mg/dL), but symptoms may not start to become noticeable until even ...
by stimulating gluconeogenesis and inhibits the peripheral use of glucose ( insulin resistance) by decreasing the translocation of glucose transporters (especially GLUT4) to the cell membrane. Cortisol also increases glycogen synthesis (glycogenesis) in the liver, storing glucose in easily accessible form. The permissive effect of cortisol on insulin action in liver glycogenesis is observed in hepatocyte culture in the laboratory, although the mechanism for this is unknown.


Bone and collagen

Cortisol reduces bone formation, favoring long-term development of osteoporosis (progressive bone disease). The mechanism behind this is two-fold: cortisol stimulates the production of
RANKL Receptor activator of nuclear factor kappa- ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiati ...
by
osteoblast Osteoblasts (from the Greek language, Greek combining forms for "bone", ὀστέο-, ''osteo-'' and βλαστάνω, ''blastanō'' "germinate") are cell (biology), cells with a single Cell nucleus, nucleus that synthesize bone. However, in the p ...
s which stimulates, through binding to RANK receptors, the activity of osteoclasts – cells responsible for calcium resorption from bone – and also inhibits the production of osteoprotegerin (OPG) which acts as a decoy receptor and captures some RANKL before it can activate the osteoclasts through RANK. In other words, when RANKL binds to OPG, no response occurs as opposed to the binding to RANK which leads to the activation of osteoclasts. It transports
potassium Potassium is the chemical element with the symbol K (from Neo-Latin '' kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmos ...
out of cells in exchange for an equal number of
sodium Sodium is a chemical element with the symbol Na (from Latin ''natrium'') and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable ...
ions (see above). This can trigger the
hyperkalemia Hyperkalemia is an elevated level of potassium (K+) in the blood. Normal potassium levels are between 3.5 and 5.0mmol/L (3.5 and 5.0mEq/L) with levels above 5.5mmol/L defined as hyperkalemia. Typically hyperkalemia does not cause symptoms. Occa ...
of metabolic shock from surgery. Cortisol also reduces
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar ...
absorption in the intestine. Cortisol down-regulates the synthesis of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
.


Amino acid

Cortisol raises the free amino acids in the serum by inhibiting collagen formation, decreasing amino acid uptake by muscle, and inhibiting protein synthesis. Cortisol (as opticortinol) may inversely inhibit
IgA Iga may refer to: Arts and entertainment * Ambush at Iga Pass, a 1958 Japanese film * Iga no Kagemaru, Japanese manga series * Iga, a set of characters from the Japanese novel '' The Kouga Ninja Scrolls'' Biology * ''Iga'' (beetle), a g ...
precursor cells in the intestines of calves. Cortisol also inhibits IgA in serum, as it does IgM; however, it is not shown to inhibit IgE.


Electrolyte balance

Cortisol decreases glomerular filtration rate, and renal plasma flow from the kidneys thus increasing phosphate excretion, as well as increasing sodium and water retention and potassium excretion by acting on mineralocorticoid receptors. It also increases sodium and water absorption and potassium excretion in the intestines.


Sodium

Cortisol promotes sodium absorption through the small intestine of mammals. Sodium depletion, however, does not affect cortisol levels so cortisol cannot be used to regulate serum sodium. Cortisol's original purpose may have been sodium transport. This hypothesis is supported by the fact that freshwater fish use cortisol to stimulate sodium inward, while saltwater fish have a cortisol-based system for expelling excess sodium.


Potassium

A sodium load augments the intense potassium excretion by cortisol.
Corticosterone Corticosterone, also known as 17-deoxycortisol and 11β,21-dihydroxyprogesterone, is a 21-carbon steroid hormone of the corticosteroid type produced in the cortex of the adrenal glands. It is of minor importance in humans, except in the very rar ...
is comparable to cortisol in this case. For potassium to move out of the cell, cortisol moves an equal number of sodium ions into the cell. This should make pH regulation much easier (unlike the normal potassium-deficiency situation, in which two sodium ions move in for each three potassium ions that move out—closer to the deoxycorticosterone effect).


Stomach and kidneys

Cortisol stimulates gastric-acid secretion. Cortisol's only direct effect on the hydrogen-ion excretion of the kidneys is to stimulate the excretion of ammonium ions by deactivating the renal glutaminase enzyme.


Memory

Cortisol works with adrenaline (epinephrine) to create memories of short-term emotional events; this is the proposed mechanism for storage of flash bulb memories, and may originate as a means to remember what to avoid in the future. However, long-term exposure to cortisol damages cells in the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic syste ...
; this damage results in impaired learning.


Diurnal cycles

Diurnal cycles of cortisol levels are found in humans.


Stress

Sustained stress can lead to high levels of circulating cortisol (regarded as one of the more important of the several "stress hormones").


Effects during pregnancy

During human pregnancy, increased fetal production of cortisol between weeks 30 and 32 initiates production of fetal lung
pulmonary surfactant Pulmonary surfactant is a surface-active complex of phospholipids and proteins formed by type II alveolar cells. The proteins and lipids that make up the surfactant have both hydrophilic and hydrophobic regions. By adsorbing to the air-water in ...
to promote maturation of the lungs. In fetal lambs, glucocorticoids (principally cortisol) increase after about day 130, with lung surfactant increasing greatly, in response, by about day 135, and although lamb fetal cortisol is mostly of maternal origin during the first 122 days, 88% or more is of fetal origin by day 136 of gestation. Although the timing of fetal cortisol concentration elevation in sheep may vary somewhat, it averages about 11.8 days before the onset of labor. In several livestock species (e.g. cattle, sheep, goats, and pigs), the surge of fetal cortisol late in gestation triggers the onset of parturition by removing the progesterone block of cervical dilation and myometrial contraction. The mechanisms yielding this effect on progesterone differ among species. In the sheep, where progesterone sufficient for maintaining pregnancy is produced by the placenta after about day 70 of gestation, the prepartum fetal cortisol surge induces placental enzymatic conversion of progesterone to estrogen. (The elevated level of estrogen stimulates prostaglandin secretion and oxytocin receptor development.) Exposure of fetuses to cortisol during gestation can have a variety of developmental outcomes, including alterations in prenatal and postnatal growth patterns. In
marmoset The marmosets (), also known as zaris or sagoin, are 22 New World monkey species of the genera ''Callithrix'', ''Cebuella'', ''Callibella'', and ''Mico''. All four genera are part of the biological family Callitrichidae. The term "marmoset" is ...
s, a species of New World primates, pregnant females have varying levels of cortisol during gestation, both within and between females. Infants born to mothers with high gestational cortisol during the first trimester of pregnancy had lower rates of growth in body mass indices than infants born to mothers with low gestational cortisol (about 20% lower). However, postnatal growth rates in these high-cortisol infants were more rapid than low-cortisol infants later in postnatal periods, and complete catch-up in growth had occurred by 540 days of age. These results suggest that gestational exposure to cortisol in fetuses has important potential fetal programming effects on both pre and postnatal growth in primates.


Synthesis and release

Cortisol is produced in the human body by the
adrenal gland The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex ...
in the zona fasciculata, the second of three layers comprising the adrenal cortex. The cortex forms the outer "bark" of each adrenal gland, situated atop the kidneys. The release of cortisol is controlled by the hypothalamus, a part of the brain. The secretion of corticotropin-releasing hormone by the hypothalamus triggers cells in the neighboring anterior pituitary to secrete another hormone, the adrenocorticotropic hormone (ACTH), into the vascular system, through which blood carries it to the adrenal cortex. ACTH stimulates the synthesis of cortisol and other glucocorticoids, mineralocorticoid aldosterone, and dehydroepiandrosterone.


Testing of individuals

Normal values indicated in the following tables pertain to humans (normal levels vary among species). Measured cortisol levels, and therefore reference ranges, depend on the sample type (blood or urine), analytical method used, and factors such as age and sex. Test results should, therefore, always be interpreted using the reference range from the laboratory that produced the result. Using the molecular weight of 362.460 g/mole, the conversion factor from µg/dL to nmol/L is approximately 27.6; thus, 10 µg/dL is about 276 nmol/L. Cortisol follows a
circadian rhythm A circadian rhythm (), or circadian cycle, is a natural, internal process that regulates the sleep–wake cycle and repeats roughly every 24 hours. It can refer to any process that originates within an organism (i.e., endogenous) and responds to ...
, and to accurately measure cortisol levels is best to test four times per day through saliva. An individual may have normal total cortisol but have a lower than normal level during a certain period of the day and a higher than normal level during a different period. Therefore, some scholars question the clinical utility of cortisol measurement. Cortisol is lipophilic, and is transported bound to transcortin (also known as corticosteroid-binding globulin) and
albumin Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water- soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Album ...
, while only a small part of the total serum cortisol is unbound and has biological activity. This binding to the corticosteroid-binding globulin is accomplished through hydrophobic interactions in which cortisol binds in a 1:1 ratio. Serum cortisol assays measures total cortisol, and its results may be misleading for patients with altered serum protein concentrations. The salivary cortisol test avoids this problem because only free cortisol can pass through the salivary barrier. Transcortin particles are too large to pass through this barrier. Automated
immunoassay An immunoassay (IA) is a biochemical test that measures the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody (usually) or an antigen (sometimes). The molecule detected by the immunoa ...
s lack specificity and show significant cross-reactivity due to interactions with structural analogs of cortisol, and show differences between assays. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) can improve specificity and sensitivity.


Disorders of cortisol production

Some medical disorders are related to abnormal cortisol production, such as: * Primary hypercortisolism ( Cushing's syndrome): excessive levels of cortisol ** Secondary hypercortisolism (pituitary tumor resulting in Cushing's disease, pseudo-Cushing's syndrome) * Primary
hypocortisolism Adrenal insufficiency is a condition in which the adrenal glands do not produce adequate amounts of steroid hormones. The adrenal gland normally secretes glucocorticoids (primarily cortisol), mineralocorticoids (primarily aldosterone), and androge ...
(
Addison's disease Addison's disease, also known as primary adrenal insufficiency, is a rare long-term endocrine disorder characterized by inadequate production of the steroid hormones cortisol and aldosterone by the two outer layers of the cells of the adrena ...
,
Nelson's syndrome Nelson's syndrome is a disorder that occurs in about one in four patients who have had both adrenal glands removed to treat Cushing's disease. In patients with pre-existing adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas, loss of ...
): insufficient levels of cortisol ** Secondary hypocortisolism (pituitary tumor, Sheehan's syndrome)


Regulation

The primary control of cortisol is the pituitary gland peptide, ACTH, which probably controls cortisol by controlling the movement of calcium into the cortisol-secreting target cells. ACTH is in turn controlled by the hypothalamic peptide corticotropin-releasing hormone (CRH), which is under nervous control. CRH acts synergistically with arginine vasopressin,
angiotensin II Angiotensin is a peptide hormone that causes vasoconstriction and an increase in blood pressure. It is part of the renin–angiotensin system, which regulates blood pressure. Angiotensin also stimulates the release of aldosterone from the adr ...
, and epinephrine. (In swine, which do not produce arginine vasopressin, lysine vasopressin acts synergistically with CRH.) When activated macrophages start to secrete IL-1, which synergistically with CRH increases ACTH, T-cells also secrete glucosteroid response modifying factor (GRMF), as well as IL-1; both increase the amount of cortisol required to inhibit almost all the immune cells. Immune cells then assume their own regulation, but at a higher cortisol setpoint. The increase in cortisol in diarrheic calves is minimal over healthy calves, however, and falls over time. The cells do not lose all their fight-or-flight override because of interleukin-1's synergism with CRH. Cortisol even has a negative feedback effect on interleukin-1—especially useful to treat diseases that force the hypothalamus to secrete too much CRH, such as those caused by endotoxic bacteria. The suppressor immune cells are not affected by GRMF, so the immune cells' effective setpoint may be even higher than the setpoint for physiological processes. GRMF affects primarily the liver (rather than the kidneys) for some physiological processes. High-potassium media (which stimulates aldosterone secretion ''in vitro'') also stimulate cortisol secretion from the fasciculata zone of canine adrenals — unlike corticosterone, upon which potassium has no effect. Potassium loading also increases ACTH and cortisol in humans. This is probably the reason why potassium deficiency causes cortisol to decline (as mentioned) and causes a decrease in conversion of 11-deoxycortisol to cortisol. This may also have a role in rheumatoid-arthritis pain; cell potassium is always low in RA. Ascorbic acid presence, particularly in high doses has also been shown to mediate response to psychological stress and speed the decrease of the levels of circulating cortisol in the body post-stress. This can be evidenced through a decrease in systolic and diastolic blood pressures and decreased salivary cortisol levels after treatment with ascorbic acid.


Factors increasing cortisol levels

* Viral infections increase cortisol levels through activation of the HPA axis by cytokines. * Intense (high VO2 max) or prolonged aerobic exercise transiently increases cortisol levels to increase gluconeogenesis and maintain blood glucose; however, cortisol declines to normal levels after eating (i.e., restoring a neutral energy balance) * Severe trauma or stressful events can elevate cortisol levels in the blood for prolonged periods. * Low-carbohydrate diets cause a short-term increase in resting cortisol (~3 weeks), and increase the cortisol response to aerobic exercise in the short- and long-term. * Increase in the concentration of ghrelin, the hunger stimulating hormone, increases levels of cortisol.


Biochemistry


Biosynthesis

Cortisol is synthesized from
cholesterol Cholesterol is any of a class of certain organic molecules called lipids. It is a sterol (or modified steroid), a type of lipid. Cholesterol is biosynthesized by all animal cells and is an essential structural component of animal cell memb ...
. Synthesis takes place in the zona fasciculata of the adrenal cortex. (The name cortisol is derived from cortex.) While the adrenal cortex also produces aldosterone (in the zona glomerulosa) and some
sex hormone Sex hormones, also known as sex steroids, gonadocorticoids and gonadal steroids, are steroid hormones that interact with vertebrate steroid hormone receptors. The sex hormones include the androgens, estrogens, and progestogens. Their effect ...
s (in the zona reticularis), cortisol is its main secretion in humans and several other species. (However, in cattle, corticosterone levels may approach or exceed cortisol levels.). The medulla of the adrenal gland lies under the cortex, mainly secreting the catecholamines adrenaline (epinephrine) and noradrenaline (norepinephrine) under sympathetic stimulation. The synthesis of cortisol in the adrenal gland is stimulated by the
anterior lobe The anterior lobe of cerebellum is the portion of the cerebellum responsible for mediating unconscious proprioception. Inputs into the anterior lobe of the cerebellum are mainly from the spinal cord. It is sometimes equated to the "paleocerebellum ...
of the
pituitary gland In vertebrate anatomy, the pituitary gland, or hypophysis, is an endocrine gland, about the size of a chickpea and weighing, on average, in humans. It is a protrusion off the bottom of the hypothalamus at the base of the brain. The h ...
with ACTH; ACTH production is, in turn, stimulated by CRH, which is released by the hypothalamus. ACTH increases the concentration of cholesterol in the inner mitochondrial membrane, via regulation of the steroidogenic acute regulatory protein. It also stimulates the main rate-limiting step in cortisol synthesis, in which cholesterol is converted to pregnenolone and catalyzed by Cytochrome P450SCC ( side-chain cleavage enzyme).


Metabolism


11beta-hydroxysteroid dehydrogenases

Cortisol is metabolized reversibly to cortisone by the 11-beta hydroxysteroid dehydrogenase system (11-beta HSD), which consists of two enzymes: 11-beta HSD1 and 11-beta HSD2. The metabolism of cortisol to cortisone involves oxidation of the hydroxyl group at the 11-beta position. * 11-beta HSD1 uses the cofactor NADPH to convert biologically inert cortisone to biologically active cortisol * 11-beta HSD2 uses the cofactor NAD+ to convert cortisol to cortisone Overall, the net effect is that 11-beta HSD1 serves to increase the local concentrations of biologically active cortisol in a given tissue; 11-beta HSD2 serves to decrease local concentrations of biologically active cortisol. If hexose-6-phosphate dehydrogenase (H6PDH) is present, the equilibrium can favor the activity of 11-beta HSD1. H6PDH regenerates NADPH, which increases the activity of 11-beta HSD1, and decreases the activity of 11-beta HSD2. An alteration in 11-beta HSD1 has been suggested to play a role in the pathogenesis of
obesity Obesity is a medical condition, sometimes considered a disease, in which excess body fat has accumulated to such an extent that it may negatively affect health. People are classified as obese when their body mass index (BMI)—a person's ...
,
hypertension Hypertension (HTN or HT), also known as high blood pressure (HBP), is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms. Long-term high b ...
, and insulin resistance known as metabolic syndrome. An alteration in 11-beta HSD2 has been implicated in essential hypertension and is known to lead to the
syndrome of apparent mineralocorticoid excess Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension (high blood pressure), hypernatremia (increased blood sodium concentration) and hypokalemia (decreased blood potassium concentration). It results fro ...
(SAME).


A-ring reductases (5alpha- and 5beta-reductases)

Cortisol is also metabolized irreversibly into 5-alpha tetrahydrocortisol (5-alpha THF) and 5-beta tetrahydrocortisol (5-beta THF), reactions for which 5-alpha reductase and 5-beta-reductase are the rate-limiting factors, respectively. 5-Beta reductase is also the rate-limiting factor in the conversion of cortisone to tetrahydrocortisone.


Cytochrome P450, family 3, subfamily A monooxygenases

Cortisol is also metabolized irreversibly into 6β-hydroxycortisol by cytochrome p450-3A monooxygenases, mainly,
CYP3A4 Cytochrome P450 3A4 (abbreviated CYP3A4) () is an important enzyme in the body, mainly found in the liver and in the intestine. It oxidizes small foreign organic molecules ( xenobiotics), such as toxins or drugs, so that they can be removed from ...
. Drugs that induce CYP3A4 may accelerate cortisol clearance.


Chemistry

Cortisol is a naturally occurring pregnane
corticosteroid Corticosteroids are a class of steroid hormones that are produced in the adrenal cortex of vertebrates, as well as the synthetic analogues of these hormones. Two main classes of corticosteroids, glucocorticoids and mineralocorticoids, are inv ...
and is also known as 11β,17α,21-trihydroxypregn-4-ene-3,20-dione.


Animals

In animals, cortisol is often used as an indicator of stress and can be measured in blood, saliva, urine, hair, and faeces.


See also

* Cortisone, a hormone * Cortisol awakening response *
List of corticosteroids This is a list of corticosteroids (glucocorticoids and mineralocorticoids) or derivatives of cortisol (hydrocortisone). Most esters of these corticosteroids are not included in this list; for esters, see here instead. The most common structural ...
* Membrane glucocorticoid receptor


References


External links


Cortisol MS Spectrum

Cortisol: analyte monograph
– The Association for Clinical Biochemistry and Laboratory Medicine {{Authority control Anxiety Glucocorticoids Otologicals Pregnanes Stress (biology)