Cool flame
   HOME

TheInfoList



OR:

A cool flame or invisible flame is a
flame A flame (from Latin '' flamma'') is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density the ...
having a maximal temperature below about . It is usually produced in a chemical reaction of a certain fuel-air mixture. In contrast to an ordinary flame, the reaction is not vigorous and releases little heat, light, or
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
. Cold flames are difficult to observe and are uncommon in everyday life, but they are responsible for
engine knock In spark ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignite ...
– the undesirable, erratic, and noisy combustion of low-octane fuels in
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
s.


History

Cool flames were accidentally discovered in the 1810s by Sir
Humphry Davy Sir Humphry Davy, 1st Baronet, (17 December 177829 May 1829) was a British chemist and inventor who invented the Davy lamp and a very early form of arc lamp. He is also remembered for isolating, by using electricity, several elements for ...
, who was inserting a hot platinum wire into a mixture of air and diethyl ether vapor. "When the experiment on the slow combustion of ether is made in the dark, a pale phosphorescent light is perceived above the wire, which of course is most distinct when the wire ceases to be ignited. This appearance is connected with the formation of a peculiar acrid volatile substance possessed of acid properties." After noticing that certain types of flame did not burn his fingers or ignite a match, he also found that those unusual flames could change into conventional ones and that at certain compositions and temperatures, they did not require an external ignition source, such as a spark or hot material.
Web version at NASA
H. Davy (1817
"Some new experiments and observations on the combustion of gaseous mixtures, with an account of a method of preserving a continued light in mixtures of inflammable gases and air without flame,"
''Philosophical Transactions of the Royal Society of London'', 107 : 77-86.
Harry Julius Emeléus Harry Julius Emeléus CBE, FRS (22 June 1903 – 2 December 1993) was a leading English inorganic chemist and a professor in the department of chemistry, Cambridge University. Early life Emeléus was born in Poplar, London on 22 June 1903, t ...
was the first to record their emission spectra, and in 1929 he coined the term "cold flame".


Parameters

Cool flame can occur in
hydrocarbons In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic, and their odors are usually weak or ...
,
alcohols In chemistry, an alcohol is a type of organic compound that carries at least one hydroxyl () functional group bound to a saturated carbon atom. The term ''alcohol'' originally referred to the primary alcohol ethanol (ethyl alcohol), which is ...
,
aldehydes In organic chemistry, an aldehyde () is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl grou ...
,
oils An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) & lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturate ...
,
acids In computer science, ACID ( atomicity, consistency, isolation, durability) is a set of properties of database transactions intended to guarantee data validity despite errors, power failures, and other mishaps. In the context of databases, a ...
,
waxes Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low ...
, and even
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The relative abundance of methane ...
. The lowest temperature of a cool flame is poorly defined and is conventionally set as a temperature at which the flame can be detected by eye in a dark room (cool flames are hardly visible in daylight). This temperature slightly depends on the fuel to oxygen ratio and strongly depends on gas pressure – there is a threshold below which cool flame is not formed. A specific example is 50% n-
butane Butane () or ''n''-butane is an alkane with the formula C4H10. Butane is a gas at room temperature and atmospheric pressure. Butane is a highly flammable, colorless, easily liquefied gas that quickly vaporizes at room temperature. The name but ...
–50%
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements ...
(by volume) which has a cool flame temperature (CFT) of about 300 °C ut . One of the lowest CFTs (156 °C) was reported for a CHOCH + O + N mixture at . The CFT is significantly lower than the
auto-ignition temperature The autoignition temperature or kindling point of a substance is the lowest temperature in which it spontaneously ignites in a normal atmosphere without an external source of ignition, such as a flame or spark. This temperature is required to s ...
(AIT) of conventional flame (see table). The spectra of cool flames consist of several bands and are dominated by the blue and violet ones – thus the flame usually appears pale blue. The blue component originates from the excited state of
formaldehyde Formaldehyde ( , ) ( systematic name methanal) is a naturally occurring organic compound with the formula and structure . The pure compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde (refer to section ...
(CHO*) which is formed via chemical reactions in the flame: A cool flame does not start instantaneously after the threshold pressure and temperature are applied, but has an induction time. The induction time shortens and the glow intensity increases with increasing pressure. With increasing temperature, the intensity may decrease because of the disappearance of peroxy radicals required for the above glow reactions. Self-sustained, stable cool flames have been established by adding ozone into oxidizer stream.


Mechanism

Whereas in a usual flame molecules break down to small fragments and combine with oxygen producing carbon dioxide (I.e. burn), in a cool flame, the fragments are relatively large and easily recombine with each other. Therefore, much less heat, light and carbon dioxide is released; the combustion process is oscillatory and can sustain for a long time. A typical temperature increase upon ignition of a cool flame is a few tens of degrees Celsius whereas it is on the order of 1000 °C for a conventional flame. Most experimental data can be explained by the model which considers cool flame just as a slow chemical reaction where the rate of heat generation is higher than the heat loss. This model also explains the oscillatory character of the cool flame: the reaction accelerates as it produces more heat until the heat loss becomes appreciable and temporarily quenches the process.


Applications

Cool flames may contribute to
engine knock In spark ignition internal combustion engines, knocking (also knock, detonation, spark knock, pinging or pinking) occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignite ...
– the undesirable, erratic, and noisy combustion of low-octane fuels in internal combustion engines. In a normal regime, the conventional flame front travels smoothly in the combustion chamber from the spark plug, compressing the fuel/air mixture ahead. However, the concomitant increase in pressure and temperature may produce a cool flame in the last unburned fuel-air mixture (the so-called end gasses) and participate in the autoignition of the end gasses. This sudden, localized heat release generates a shock wave which travels through the combustion chamber, with its sudden pressure rise causing an audible knocking sound. Worse, the shock wave disrupts the thermal boundary layer on the piston surface, causing overheating and eventual melting. The output power decreases and, unless the throttle (or load) is cut off quickly, the engine can be damaged as described in a few minutes. The sensitivity of a fuel to a cool-flame ignition strongly depends on the temperature, pressure and composition. The cool flame initiation of the knock process is likely only in highly throttled operating conditions, since cool flames are observed at low pressures. Under normal operating conditions, autoignition occurs without being triggered by a cool flame. Whereas the temperature and pressure of the combustion are largely determined by the engine, the composition can be controlled by various antiknock additives. The latter mainly aim at removing the radicals (such as CH2O* mentioned above) thereby suppressing the major source of the cool flame.


See also

*
Fire Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames ...
*
Flame A flame (from Latin '' flamma'') is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density the ...
*
Plasma (physics) Plasma ()πλάσμα
, Henry George Liddell, R ...


References


Further reading

*{{cite book, url=https://books.google.com/books?id=f1LF69L1OcIC&pg=PA429, pages=429 ff, title=Chemical oscillations and instabilities: non-linear chemical kinetics, author1=Peter Gray , author2=Stephen K. Scott , publisher=Oxford University Press, year=1994, isbn=0-19-855864-3 - an explanation of the oscillatory nature of cool flame. Fire