A communications satellite is an artificial satellite that relays and amplifies radio telecommunications signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications. There are about 2,000 communications satellites in Earth's orbit, used by both private and government organizations.[1] Many are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it.
The high frequency radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.[2] Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.[3]
The concept of the geostationary communications satellite was first proposed by Arthur C. Clarke, along with Vahid K. Sanadi building on work by Konstantin Tsiolkovsky. In October 1945, Clarke published an article titled "Extraterrestrial Relays" in the British magazine Wireless World.[4] The article described the fundamentals behind the deployment of artificial satellites in geostationary orbits for the purpose of relaying radio signals. Thus, Arthur C. Clarke is often quoted as being the inventor of the communications satellite and the term 'Clarke Belt' employed as a description of the orbit.[5]
Decades later a project named Communication Moon Relay was a telecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communication by using the Moon as a passive reflector and a natural communications satellite.
The first artificial Earth satellite was Sputnik 1. Put into orbit by the Soviet Union on October 4, 1957, it was equipped with an on-board radio-transmitter that worked on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was launched as a major step in the exploration of space and rocket development. However, it was not placed in orbit for the purpose of sending data from one point on earth to another.
The first satellite to relay communications was Pioneer 1< The high frequency radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.[2] Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.[3]
The concept of the geostationary communications satellite was first proposed by Arthur C. Clarke, along with Vahid K. Sanadi building on work by Konstantin Tsiolkovsky. In October 1945, Clarke published an article titled "Extraterrestrial Relays" in the British magazine Wireless World.[4] The article described the fundamentals behind the deployment of artificial satellites in geostationary orbits for the purpose of relaying radio signals. Thus, Arthur C. Clarke is often quoted as being the inventor of the communications satellite and the term 'Clarke Belt' employed as a description of the orbit.[5]
Decades later a project named Communication Moon Relay was a telecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communication by using the Moon as a passive reflector and a natural communications satellite.
The first artificial Earth satellite was Sputnik 1. Put into orbit by the Soviet Union on October 4, 1957, it was equipped with an on-board radio-transmitter that worked on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was launched as a major step in the exploration of space and rocket development. However, it was not placed in orbit for the purpose of sending data from one point on earth to another.
The first satellite to relay communications was Pioneer 1, an intended lunar probe that was launched on October 11, 1958. Though the spacecraft only made it about halfway to the moon, it flew high enough to carry out the proof of concept relay of telemetry across the world, first from Cape Canaveral to Manchester, England; then from Hawaii to Cape Canaveral; and finally, across the world from Hawaii to Manchester.[6]
The first satellite purpose-built to relay communications was NASA's Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower.[7] Courier 1B, built by Philco, launched in 1960, was the world's first active repeater satellite.
The first artificial satellite used solely to further advances in global communications was a balloon named Echo 1.[8] Echo 1 was the world's first artificial communications satellite capable of relaying signals to other points on Earth. It soared 1,600 kilometres (1,000 mi) above the planet after its Aug. 12, 1960 launch. Launched by NASA, Echo 1 was a 30-metre (100 ft) aluminized PET film balloon that served as a passive reflector for radio communications. The world's first inflatable satellite — or "satelloon", as they were informally known — helped lay the foundation of today's satellite communications. The idea behind a communications satellite is simple: Send data up into space and beam it back down to another spot on the globe. Echo 1 accomplished this by essentially serving as an enormous mirror, 10 stories tall, that could be used to reflect communications signals.
There are two major classes of communications satellites, passive and active. Passive satellites only reflect the signal coming from the source, toward the direction of the receiver. With passive satellites, the reflected signal is not amplified at the satellite, and only a very small amount of the transmitted energy actually reaches the receiver. Since the satellite is so far above Earth, the radio signal is attenuated due to free-space path loss, so the signal received on Earth is very, very weak. Active satellites, on the other hand, amplify the received signal before retransmitting it to the receiver on the ground.[3] Passive satellites were the first communica Decades later a project named Communication Moon Relay was a telecommunication project carried out by the United States Navy. Its objective was to develop a secure and reliable method of wireless communication by using the Moon as a passive reflector and a natural communications satellite.
The first artificial Earth satellite was Sputnik 1. Put into orbit by the Soviet Union on October 4, 1957, it was equipped with an on-board radio-transmitter that worked on two frequencies: 20.005 and 40.002 MHz. Sputnik 1 was launched as a major step in the exploration of space and rocket development. However, it was not placed in orbit for the purpose of sending data from one point on earth to another.
The first satellite to relay communications was Pioneer 1, an intended lunar probe that was launched on October 11, 1958. Though the spacecraft only made it about halfway to the moon, it flew high enough to carry out the proof of concept relay of telemetry across the world, first from Cape Canaveral to Manchester, England; then from Hawaii to Cape Canaveral; and finally, across the world from Hawaii to Manchester.[6]
The first satellite purpose-built to relay communications was NASA's Project SCORE in 1958, which used a tape recorder to store and forward voice messages. It was used to send a Christmas greeting to the world from U.S. President Dwight D. Eisenhower.[7] Courier 1B, built by Philco, launched in 1960, was the world's first active repeater satellite.
The first artificial satellite used solely to further advances in global communications was a balloon named Echo 1.[8] Echo 1 was the world's first artificial communications satellite capable of relaying signals to other points on Earth. It soared 1,600 kilometres (1,000 mi) above the planet after its Aug. 12, 1960 launch. Launched by NASA, Echo 1 was a 30-metre (100 ft) aluminized PET film balloon that served as a passive reflector for radio communications. The world's first inflatable satellite — or "satelloon", as they were informally known — helped lay the foundation of today's satellite communications. The idea behind a communications satellite is simple: Send data up into space and beam it back down to another spot on the globe. Echo 1 accomplished this by essentially serving as an enormous mirror, 10 stories tall, that could be used to reflect communications signals.
There are two major classes of communications satellites, passive and active. Passive satellites only reflect the signal coming from the source, toward the direction of the receiver. With passive satellites, the reflected signal is not amplified at the satellite, and only a very small amount of the transmitted energy actually reaches the receiver. Since the satellite is so far above Earth, the radio signal is attenuated due to free-space path loss, so the signal received on Earth is very, very weak. Active satellites, on the other hand, amplify the received signal before retransmitting it to the receiver on the ground.[3] Passive satellites were the first communications satellites, but are little used now.
Telstar was the second active, direct relay communications satellite. Belonging to AT&T as part of a multi-national agreement between AT&T, Bell Telephone Laboratories, NASA, the British General Post Office, and the French National PTT (Post Office) to develop satellite communications, it was launched by NASA from Cape Canaveral on July 10, 1962, in the first privately sponsored space launch. Relay 1 was launched on December 13, 1962, and it became the first satellite to transmit across the Pacific Ocean on November 22, 1963.[9]
An immediate antecedent of the geostationary satellites was the Hughes Aircraft Company's Syncom 2, launched on July 26, 1963. Syncom 2 was the first communications satellite in a geosynchronous orbit. It revolved around the earth once per day at constant speed, but because it still had north–south motion, special equipment was needed to track it. Its successor, Syncom 3 was the first geostationary communications satellite. Syncom 3 obtained a geosynchronous orbit, without a north–south motion, making it appear from the ground as a stationary object in the sky.
Beginning with the Viking program,[a] all Mars landers, aside from Mars Pathfinder, have used orbiting spacecraft as communications satellites for relaying their data to Earth. The landers use UHF transmitters to send their data to the orbiters, which then relay the data to Earth using either X band or Ka band frequencies. These higher frequencies, along with more powerful transmitters and larger antennas, permit the orbiters to send the data much faster than the landers could manage transmitting directly to Earth, which conserves valuable time on the receiving antennas.[10]
Communications satellites usually have one of three primary types of orbit, while other orbital classifications are used to further specify orbital details.
As satellites in MEO and LEO orbit the Earth faster, they do not remain visible in the sky to a fixed point on Earth continually like a geostationary satellite, but appear to a ground observer to cross the sky and "set" when they go behind the Earth. Therefore, to provide continuous communications capability with these lower orbits requires a larger number of satellites, so one will always be in the sky for transmission of communication signals. However, due to their relatively small distance to the Earth their signals are stronger.[clarification needed]
Because of their low altitude, these satellites are only visible from within a radius of roughly 1,000 kilometres (620 mi) from the sub-satellite point. In addition, satellites in low earth orbit change their position relative to the ground position quickly. So even for local applications, many satellites are needed if the mission requires uninterrupted connectivity.
Low-Earth-orbiting satellites are less expensive to launch into orbit than geostationary satellites and, due to proximity to the ground, do not require as high signal strength (Recall that signal strength falls off as the square of the distance from the source, so the effect is dramatic). Thus there is a trade off between the number of satellites and their cost.
In addition, there are important differences in the onboard and ground equipment needed to support the two types of missions.
Because of their low altitude, these satellites are only visible from within a radius of roughly 1,000 kilometres (620 mi) from the sub-satellite point. In addition, satellites in low earth orbit change their position relative to the ground position quickly. So even for local applications, many satellites are needed if the mission requires uninterrupted connectivity.
Low-Earth-orbiting satellites are less expensive to launch into orbit than geostationary satellites and, due to proximity to the ground, do not require as high signal strength (Recall that signal strength falls off as the square of the distance from the source, so the effect is dramatic). Thus there is a trade off between the number of satellites and their cost.
In addition, there are important differences in the onboard and ground equipment needed to support the two types of missions.
A group of satellites working in concert is known as a satellite constellation. Two such constellations, intended to provide satellite phone services, primarily to remote areas, are the Iridium and Globalstar systems. The Iridium system has 66 satellites.
It is also possible to offer discontinuous coverage using a low-Earth-orbit satellite capable of storing data received while passing over one part of Earth and transmitting it later while passing over another part. This will be the case with the CASCADE system of Canada's CASSIOPE communications satellite. Another system using this store and forward method is Orbcomm.
A MEO is a satellite in orbit somewhere between 2,000 and 35,786 kilometres (1,243 and 22,236 mi) above the earth's surface. MEO satellites are similar to LEO satellites in functionality. MEO satellites are visible for much longer periods of time than LEO satellites, usually between 2 and 8 hours. MEO satellites have a larger coverage area than LEO satellites. A MEO satellite's longer duration of visibility and wider footprint means fewer satellites are needed in a MEO network than a LEO network. One disadvantage is that a MEO satellite's distance gives it a longer time delay and weaker signal than a LEO satellite, although these limitations are not as severe as those of a GEO satellite.
Like LEOs, these satellites do not maintain a stationary distance from the earth. This is in contrast to the geostationary orbit, where satellites are always 35,786 kilometres (22,236 mi) from the earth.
Typically the orbit of a medium earth orbit satellite is about 16,000 kilometres (10,000 mi) above earth. In various patterns, these satellites make the trip around earth in anywhere from 2 to 8 hours.
A geostationary orbit is useful for communications because ground antennas can be aimed at the satellite without their having to track the satellite's motion. This is relatively inexpensive.
In applications that require many ground antennas, such as DirecTV distribution, the savings in ground equipment can more than outweigh the cost and complexity of placing a satellite into orbit.
By 2000, Hughes Space and Communications (now Boeing Satellite Development Center) had built nearly 40 percent of the more than one hundred satellites in service worldwide. Other major satellite manufacturers include Space Systems/Loral, Orbital Sciences Corporation with the Star Bus series, Indian Space Research Organisation, Lockheed Martin (owns the former RCA Astro Electronics/GE Astro Space business), Northrop Grumman, Alcatel Space, now Thales Alenia Space, with the Spacebus series, and Astrium.
Geostationary satellites must operate above the equator and therefore appear lower on the horizon as the receiver gets farther from the equator. This will cause problems for extreme northerly latitudes, affecting connectivity and causing multipath interference (caused by signals reflecting off the ground and into the ground antenna).
Thus, for areas close to the North (and South) Pole, a geostationary satellite may appear below the horizon. Therefore, Molniya orbit satellites have been launched, mainly in Russia, to alleviate this problem.
Molniya orbits can be an appealing alternative in such cases. The Molniya orbit is highly inclined, guaranteeing good elevation over selected positions during the northern portion of the orbit. (Elevation is the extent of the satellite's position above the horizon. Thus, a satellite at the horizon has zero elevation and a satellite directly overhead has elevation of 90 degrees.)
The Molniya orbit is designed so that the satellite spends the great majority of its time over the far northern latitudes, during which its ground footprint moves only slightly. Its period is one half day, so that the satellite is available for operation over the targeted region for six to nine hours every second revolution. In this way a constellation of three Molniya satellites (plus in-orbit spares) can provide uninterrupted coverage.
The first satellite of the Molniya series was launched on April 23, 1965 and was used for experimental transmission of TV signals from a Moscow uplink station to downlink stations located in Siberia and the Russian Far East, in Norilsk, Khabarovsk, Magadan and Vladivostok. In November 1967 Soviet engineers created a unique system of national TV network of satellite television, called Orbita, that was based on Molniya satellites.
Thus, for areas close to the North (and South) Pole, a geostationary satellite may appear below the horizon. Therefore, Molniya orbit satellites have been launched, mainly in Russia, to alleviate this problem.
Molniya orbits can be an appealing alternative in such cases. The Molniya orbit is highly inclined, guaranteeing good elevation over selected positions during the northern portion of the orbit. (Elevation is the extent of the satellite's position above the ho Thus, for areas close to the North (and South) Pole, a geostationary satellite may appear below the horizon. Therefore, Molniya orbit satellites have been launched, mainly in Russia, to alleviate this problem.
Molniya orbits can be an appealing alternative in such cases. The Molniya orbit is highly inclined, guaranteeing good elevation over selected positions during the northern portion of the orbit. (Elevation is the extent of the satellite's position above the horizon. Thus, a satellite at the horizon has zero elevation and a satellite directly overhead has elevation of 90 degrees.)
The Molniya orbit is designed so that the satellite spends the great majority of its time over the far northern latitudes, during which its ground footprint moves only slightly. Its period is one half day, so that the satellite is available for operation over the targeted region for six to nine hours every second revolution. In this way a constellation of three Molniya satellites (plus in-orbit spares) can provide uninterrupted coverage.
The first satellite of the Molniya series was launched on April 23, 1965 and was used for experimental transmission of TV signals from a Moscow uplink station to downlink stations located in Siberia and the Russian Far East, in Norilsk, Khabarovsk, Magadan and Vladivostok. In November 1967 Soviet engineers created a unique system of national TV network of satellite television, called Orbita, that was based on Molniya satellites.
In the United States, the National Polar-orbiting Operational Environmental Satellite System (NPOESS) was established in 1994 to consolidate the polar satellite operations of
NASA (National Aeronautics and Space Administration)
NOAA (National Oceanic and Atmospheric Administration). NPOESS manages a number of satellites for various purposes; for example, METSAT for meteorological satellite, EUMETSAT for the European branch of the program, and METOP for meteorological operations.
These orbits are sun synchronous, meaning that they cross the equator at the same local time each day. For example, the satellites in the NPOESS (civilian) orbit will cross the equator, going from south to north, at times 1:30 P.M., 5:30 P.M., and 9:30 P.M.
Allocating frequencies to satellite services is a complicated process which requires international coordination and planning. This is carried out under the auspices of the International Telecommunication Union (ITU).
To facilitate frequency planning, the world is divided into three regions:
Within these regions, frequency bands are allocated Allocating frequencies to satellite services is a complicated process which requires international coordination and planning. This is carried out under the auspices of the International Telecommunication Union (ITU).
To facilitate frequency planning, the world is divided into three regions:
Within these regions, frequency bands are allocated to various satellite services, although a given service may be allocated different frequency bands in diff Within these regions, frequency bands are allocated to various satellite services, although a given service may be allocated different frequency bands in different regions. Some of the services provided by satellites are:
The first and historically most important application for communication satellites was in intercontinental long distance telephony. The fixed Public Switched Telephone Network relays telephone calls from land line telephones to an earth station, where they are then transmitted to a geostationary satellite. The downlink follows an analogous path. Improvements in submarine communications cables through the use of fiber-optics caused some decline in the use of satellites for fixed telephony in the late 20th century.
Satellite communications are still used in many applications today. Remote islands such as Ascension Island, Saint Helena, Diego Garcia, and Easter Island, where no submarine cables are in service, need satellite telephones. There are also regions of some continents and countries where landline telecommunications are rare to nonexistent, for example large regions of South America, Africa, Canada, China, Russia, and Australia. Satellite communications also provide connection to the edges of Antarctica and Greenland. Other land use for satellite phones are rigs at sea, a back up for hospitals, military, and recreation. Ships at sea, as well as planes, often use satellite phones.[13]
Satellite phone systems can be accomplished by a number of means. On a large scale, often there will be a local telephone system in an isolated area with a link to the telephone system in a main land area. There are also services that will patch a radio signal to a telephone system. In this example, almost any type of satellite can be used. Satellite phones connect directly to a constellation of either geostationary or low-Earth-orbit satellites. Calls are then forwarded to a satellite teleport connected to the Public Switched Telephone Network .
Low Earth orbit (LEO)
A low Earth orbit (LEO) typically is a circular orbit about 160 to 2,000 kilometres (99 to 1,243 mi) above the earth's surface and, correspondingly, a period (time to revolve around the earth) of about 90 minutes.[11]
Satellite constellation
<Canada's CASSIOPE communications satellite. Another system using this store and forward method is Orbcomm.
Examples
Molniya orbit
Polar orbit
Structure
Television