Combinatorial analysis
   HOME

TheInfoList



OR:

Combinatorics is an area of mathematics primarily concerned with
counting Counting is the process of determining the number of elements of a finite set of objects, i.e., determining the size of a set. The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every ele ...
, both as a means and an end in obtaining results, and certain properties of
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
structures A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
. It is closely related to many other areas of mathematics and has many applications ranging from
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premise ...
to
statistical physics Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approxim ...
and from
evolutionary biology Evolutionary biology is the subfield of biology that studies the evolutionary processes ( natural selection, common descent, speciation) that produced the diversity of life on Earth. It is also defined as the study of the history of life ...
to
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includi ...
. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
,
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
,
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, and
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics is
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, which by itself has numerous natural connections to other areas. Combinatorics is used frequently in computer science to obtain formulas and estimates in the analysis of algorithms. A
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
who studies combinatorics is called a '.


Definition

The full scope of combinatorics is not universally agreed upon. According to H.J. Ryser, a definition of the subject is difficult because it crosses so many mathematical subdivisions. Insofar as an area can be described by the types of problems it addresses, combinatorics is involved with: * the ''enumeration'' (counting) of specified structures, sometimes referred to as arrangements or configurations in a very general sense, associated with finite systems, * the ''existence'' of such structures that satisfy certain given criteria, * the ''construction'' of these structures, perhaps in many ways, and * ''optimization'': finding the "best" structure or solution among several possibilities, be it the "largest", "smallest" or satisfying some other ''optimality criterion''.
Leon Mirsky Leonid Mirsky (19 December 1918 – 1 December 1983) was a Russian-British mathematician who worked in number theory, linear algebra, and combinatorics.... Mirsky's theorem is named after him. Biography Mirsky was born in Russia on 19 December 1 ...
has said: "combinatorics is a range of linked studies which have something in common and yet diverge widely in their objectives, their methods, and the degree of coherence they have attained." One way to define combinatorics is, perhaps, to describe its subdivisions with their problems and techniques. This is the approach that is used below. However, there are also purely historical reasons for including or not including some topics under the combinatorics umbrella. Although primarily concerned with finite systems, some combinatorial questions and techniques can be extended to an infinite (specifically,
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
) but
discrete Discrete may refer to: *Discrete particle or quantum in physics, for example in quantum theory *Discrete device, an electronic component with just one circuit element, either passive or active, other than an integrated circuit *Discrete group, a g ...
setting.


History

Basic combinatorial concepts and enumerative results appeared throughout the
ancient world Ancient history is a time period from the beginning of writing and recorded human history to as far as late antiquity. The span of recorded history is roughly 5,000 years, beginning with the Sumerian cuneiform script. Ancient history cov ...
. In the 6th century BCE, ancient Indian
physician A physician (American English), medical practitioner (Commonwealth English), medical doctor, or simply doctor, is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through th ...
Sushruta asserts in Sushruta Samhita that 63 combinations can be made out of 6 different tastes, taken one at a time, two at a time, etc., thus computing all 26 − 1 possibilities.
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
historian A historian is a person who studies and writes about the past and is regarded as an authority on it. Historians are concerned with the continuous, methodical narrative and research of past events as relating to the human race; as well as the st ...
Plutarch Plutarch (; grc-gre, Πλούταρχος, ''Ploútarchos''; ; – after AD 119) was a Greek Middle Platonist philosopher, historian, biographer, essayist, and priest at the Temple of Apollo in Delphi. He is known primarily for hi ...
discusses an argument between Chrysippus (3rd century BCE) and
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
(2nd century BCE) of a rather delicate enumerative problem, which was later shown to be related to
Schröder–Hipparchus number In combinatorics, the Schröder–Hipparchus numbers form an integer sequence that can be used to count the number of plane trees with a given set of leaves, the number of ways of inserting parentheses into a sequence, and the number of ways of d ...
s. Earlier, in the ''
Ostomachion ''Ostomachion'', also known as ''loculus Archimedius'' (Archimedes' box in Latin) and also as ''syntomachion'', is a mathematical treatise attributed to Archimedes. This work has survived fragmentarily in an Arabic version and a copy, the ''A ...
'', Archimedes (3rd century BCE) may have considered the number of configurations of a
tiling puzzle Tiling puzzles are puzzles involving two-dimensional packing problems in which a number of flat shapes have to be assembled into a larger given shape without overlaps (and often without gaps). Some tiling puzzles ask you to dissect a given ...
, while combinatorial interests possibly were present in lost works by Apollonius. In the
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire ...
, combinatorics continued to be studied, largely outside of the European civilization. The
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
n mathematician
Mahāvīra Mahavira (Sanskrit: महावीर) also known as Vardhaman, was the 24th ''tirthankara'' (supreme preacher) of Jainism. He was the spiritual successor of the 23rd ''tirthankara'' Parshvanatha. Mahavira was born in the early part of the 6t ...
() provided formulae for the number of permutations and
combination In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are th ...
s, and these formulas may have been familiar to Indian mathematicians as early as the 6th century CE. The philosopher and
astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets and galaxies – in either ...
Rabbi Abraham ibn Ezra () established the symmetry of binomial coefficients, while a closed formula was obtained later by the
talmudist The Talmud (; he, , Talmūḏ) is the central text of Rabbinic Judaism and the primary source of Jewish religious law (''halakha'') and Jewish theology. Until the advent of modernity, in nearly all Jewish communities, the Talmud was the center ...
and
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, structure, space, models, and change. History On ...
Levi ben Gerson Levi ben Gershon (1288 – 20 April 1344), better known by his Graecized name as Gersonides, or by his Latinized name Magister Leo Hebraeus, or in Hebrew by the abbreviation of first letters as ''RaLBaG'', was a medieval French Jewish philosoph ...
(better known as Gersonides), in 1321. The arithmetical triangle—a graphical diagram showing relationships among the binomial coefficients—was presented by mathematicians in treatises dating as far back as the 10th century, and would eventually become known as
Pascal's triangle In mathematics, Pascal's triangle is a triangular array of the binomial coefficients that arises in probability theory, combinatorics, and algebra. In much of the Western world, it is named after the French mathematician Blaise Pascal, although o ...
. Later, in
Medieval England England in the Middle Ages concerns the history of England during the medieval period, from the end of the 5th century through to the start of the Early Modern period in 1485. When England emerged from the collapse of the Roman Empire, the econ ...
,
campanology Campanology () is the scientific and musical study of bells. It encompasses the technology of bells – how they are founded, tuned and rung – as well as the history, methods, and traditions of bellringing as an art. It is common to collect t ...
provided examples of what is now known as
Hamiltonian cycle In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex ...
s in certain
Cayley graph In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem (named after Arthur Cay ...
s on permutations. During the
Renaissance The Renaissance ( , ) , from , with the same meanings. is a period in European history The history of Europe is traditionally divided into four time periods: prehistoric Europe (prior to about 800 BC), classical antiquity (800 BC to AD ...
, together with the rest of mathematics and the
science Science is a systematic endeavor that Scientific method, builds and organizes knowledge in the form of Testability, testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earli ...
s, combinatorics enjoyed a rebirth. Works of Pascal, Newton,
Jacob Bernoulli Jacob Bernoulli (also known as James or Jacques; – 16 August 1705) was one of the many prominent mathematicians in the Bernoulli family. He was an early proponent of Leibnizian calculus and sided with Gottfried Wilhelm Leibniz during the Le ...
and Euler became foundational in the emerging field. In modern times, the works of J.J. Sylvester (late 19th century) and
Percy MacMahon Percy Alexander MacMahon (26 September 1854 – 25 December 1929) was a mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are ...
(early 20th century) helped lay the foundation for enumerative and algebraic combinatorics.
Graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
also enjoyed an increase of interest at the same time, especially in connection with the
four color problem In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions sha ...
. In the second half of the 20th century, combinatorics enjoyed a rapid growth, which led to establishment of dozens of new journals and conferences in the subject. In part, the growth was spurred by new connections and applications to other fields, ranging from algebra to probability, from
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined o ...
to
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, etc. These connections shed the boundaries between combinatorics and parts of mathematics and theoretical computer science, but at the same time led to a partial fragmentation of the field.


Approaches and subfields of combinatorics


Enumerative combinatorics

Enumerative combinatorics is the most classical area of combinatorics and concentrates on counting the number of certain combinatorial objects. Although counting the number of elements in a set is a rather broad mathematical problem, many of the problems that arise in applications have a relatively simple combinatorial description.
Fibonacci numbers In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from ...
is the basic example of a problem in enumerative combinatorics. The
twelvefold way In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of ...
provides a unified framework for counting
permutations In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or pr ...
,
combinations In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations). For example, given three fruits, say an apple, an orange and a pear, there are th ...
and partitions.


Analytic combinatorics

Analytic combinatorics In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet an ...
concerns the enumeration of combinatorial structures using tools from complex analysis and
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
. In contrast with enumerative combinatorics, which uses explicit combinatorial formulae and
generating functions In mathematics, a generating function is a way of encoding an infinite sequence of numbers () by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series ...
to describe the results, analytic combinatorics aims at obtaining asymptotic formulae.


Partition theory

Partition theory studies various enumeration and asymptotic problems related to
integer partition In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same part ...
s, and is closely related to
q-series In mathematical area of combinatorics, the ''q''-Pochhammer symbol, also called the ''q''-shifted factorial, is the product (a;q)_n = \prod_^ (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^), with (a;q)_0 = 1. It is a ''q''-analog of the Pochhammer sym ...
,
special functions Special functions are particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, geometry, physics, or other applications. The term is defined b ...
and
orthogonal polynomials In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the class ...
. Originally a part of
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
and
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (3 ...
, it is now considered a part of combinatorics or an independent field. It incorporates the bijective approach and various tools in analysis and analytic number theory and has connections with statistical mechanics. Partitions can be graphically visualized with
Young diagram In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups ...
s or
Ferrers diagram In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same part ...
s. They occur in a number of branches of mathematics and
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, including the study of
symmetric polynomial In mathematics, a symmetric polynomial is a polynomial in variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, is a ''symmetric polynomial'' if for any permutation of the subscripts one has ...
s and of the
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
and in
group representation theory In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to re ...
in general.


Graph theory

Graphs are fundamental objects in combinatorics. Considerations of graph theory range from enumeration (e.g., the number of graphs on ''n'' vertices with ''k'' edges) to existing structures (e.g., Hamiltonian cycles) to algebraic representations (e.g., given a graph ''G'' and two numbers ''x'' and ''y'', does the
Tutte polynomial The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph G and contai ...
''T''''G''(''x'',''y'') have a combinatorial interpretation?). Although there are very strong connections between graph theory and combinatorics, they are sometimes thought of as separate subjects. While combinatorial methods apply to many graph theory problems, the two disciplines are generally used to seek solutions to different types of problems.


Design theory

Design theory is a study of
combinatorial design Combinatorial design theory is the part of combinatorial mathematics that deals with the existence, construction and properties of systems of finite sets whose arrangements satisfy generalized concepts of ''balance'' and/or ''symmetry''. These co ...
s, which are collections of subsets with certain intersection properties. Block designs are combinatorial designs of a special type. This area is one of the oldest parts of combinatorics, such as in
Kirkman's schoolgirl problem Kirkman's schoolgirl problem is a problem in combinatorics proposed by Rev. Thomas Penyngton Kirkman in 1850 as Query VI in '' The Lady's and Gentleman's Diary'' (pg.48). The problem states: Fifteen young ladies in a school walk out three abre ...
proposed in 1850. The solution of the problem is a special case of a
Steiner system 250px, thumbnail, The Fano plane is a Steiner triple system S(2,3,7). The blocks are the 7 lines, each containing 3 points. Every pair of points belongs to a unique line. In combinatorial mathematics, a Steiner system (named after Jakob Steiner) ...
, which systems play an important role in the
classification of finite simple groups In mathematics, the classification of the finite simple groups is a result of group theory stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else i ...
. The area has further connections to
coding theory Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied ...
and geometric combinatorics. Combinatorial design theory can be applied to the area of
design of experiments The design of experiments (DOE, DOX, or experimental design) is the design of any task that aims to describe and explain the variation of information under conditions that are hypothesized to reflect the variation. The term is generally associ ...
. Some of the basic theory of combinatorial designs originated in the statistician
Ronald Fisher Sir Ronald Aylmer Fisher (17 February 1890 – 29 July 1962) was a British polymath who was active as a mathematician, statistician, biologist, geneticist, and academic. For his work in statistics, he has been described as "a genius who ...
's work on the design of biological experiments. Modern applications are also found in a wide gamut of areas including
finite geometry Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
, tournament scheduling,
lotteries A lottery is a form of gambling that involves the drawing of numbers at random for a prize. Some governments outlaw lotteries, while others endorse it to the extent of organizing a national or state lottery. It is common to find some degree of ...
,
mathematical chemistry Mathematical chemistry is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. Mathematical chemistry has also sometimes been called co ...
, mathematical biology, algorithm design and analysis, networking,
group testing In statistics and combinatorial mathematics, group testing is any procedure that breaks up the task of identifying certain objects into tests on groups of items, rather than on individual ones. First studied by Robert Dorfman in 1943, group tes ...
and
cryptography Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adver ...
.


Finite geometry

Finite geometry is the study of geometric systems having only a finite number of points. Structures analogous to those found in continuous geometries ( Euclidean plane,
real projective space In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in It is a compact, smooth manifold of dimension , and is a special case of a Grassmannian space. Basic properties Construction A ...
, etc.) but defined combinatorially are the main items studied. This area provides a rich source of examples for
design theory Design theory is a subfield of design research concerned with various theoretical approaches towards understanding and delineating design principles, design knowledge, and design practice. History Design theory has been approached and interp ...
. It should not be confused with discrete geometry (
combinatorial geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geo ...
).


Order theory

Order theory is the study of
partially ordered sets In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binar ...
, both finite and infinite. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". Various examples of partial orders appear in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
, geometry, number theory and throughout combinatorics and graph theory. Notable classes and examples of partial orders include lattices and Boolean algebras.


Matroid theory

Matroid theory abstracts part of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
. It studies the properties of sets (usually, finite sets) of vectors in a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
that do not depend on the particular coefficients in a linear dependence relation. Not only the structure but also enumerative properties belong to matroid theory. Matroid theory was introduced by
Hassler Whitney Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersions, characteristic classes, and geometric integratio ...
and studied as a part of order theory. It is now an independent field of study with a number of connections with other parts of combinatorics.


Extremal combinatorics

Extremal combinatorics studies how large or how small a collection of finite objects (
number A number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers c ...
s, graphs, vectors, sets, etc.) can be, if it has to satisfy certain restrictions. Much of extremal combinatorics concerns classes of
set system In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set f ...
s; this is called extremal set theory. For instance, in an ''n''-element set, what is the largest number of ''k''-element subsets that can pairwise intersect one another? What is the largest number of subsets of which none contains any other? The latter question is answered by Sperner's theorem, which gave rise to much of extremal set theory. The types of questions addressed in this case are about the largest possible graph which satisfies certain properties. For example, the largest
triangle-free graph In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with g ...
on ''2n'' vertices is a
complete bipartite graph In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory i ...
''Kn,n''. Often it is too hard even to find the extremal answer ''f''(''n'') exactly and one can only give an asymptotic estimate.
Ramsey theory Ramsey theory, named after the British mathematician and philosopher Frank P. Ramsey, is a branch of mathematics that focuses on the appearance of order in a substructure given a structure of a known size. Problems in Ramsey theory typically ask ...
is another part of extremal combinatorics. It states that any
sufficiently large In the mathematical areas of number theory and analysis, an infinite sequence or a function is said to eventually have a certain property, if it doesn't have the said property across all its ordered instances, but will after some instances have pa ...
configuration will contain some sort of order. It is an advanced generalization of the
pigeonhole principle In mathematics, the pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item. For example, if one has three gloves (and none is ambidextrous/reversible), then there mu ...
.


Probabilistic combinatorics

In probabilistic combinatorics, the questions are of the following type: what is the probability of a certain property for a random discrete object, such as a
random graph In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs ...
? For instance, what is the average number of triangles in a random graph? Probabilistic methods are also used to determine the existence of combinatorial objects with certain prescribed properties (for which explicit examples might be difficult to find) by observing that the probability of randomly selecting an object with those properties is greater than 0. This approach (often referred to as ''the''
probabilistic method The probabilistic method is a nonconstructive method, primarily used in combinatorics and pioneered by Paul Erdős, for proving the existence of a prescribed kind of mathematical object. It works by showing that if one randomly chooses objects fr ...
) proved highly effective in applications to extremal combinatorics and graph theory. A closely related area is the study of finite
Markov chains A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
, especially on combinatorial objects. Here again probabilistic tools are used to estimate the mixing time. Often associated with Paul Erdős, who did the pioneering work on the subject, probabilistic combinatorics was traditionally viewed as a set of tools to study problems in other parts of combinatorics. However, with the growth of applications to analyze algorithms in
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includi ...
, as well as classical probability,
additive number theory Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigr ...
, and
probabilistic number theory In mathematics, Probabilistic number theory is a subfield of number theory, which explicitly uses probability to answer questions about the integers and integer-valued functions. One basic idea underlying it is that different prime numbers are, in ...
, the area recently grew to become an independent field of combinatorics.


Algebraic combinatorics

Algebraic combinatorics is an area of mathematics that employs methods of
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, notably
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
and
representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essen ...
, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
. Algebraic combinatorics has come to be seen more expansively as an area of mathematics where the interaction of combinatorial and algebraic methods is particularly strong and significant. Thus the combinatorial topics may be enumerative in nature or involve
matroid In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being ...
s,
polytope In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
s,
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
s, or finite geometries. On the algebraic side, besides group and representation theory,
lattice theory A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bou ...
and
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prom ...
are common.


Combinatorics on words

Combinatorics on words deals with
formal language In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules. The alphabet of a formal language consists of sy ...
s. It arose independently within several branches of mathematics, including
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
,
group theory In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ...
and
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speakin ...
. It has applications to enumerative combinatorics,
fractal analysis Fractal analysis is assessing fractal characteristics of data. It consists of several methods to assign a fractal dimension and other fractal characteristics to a dataset which may be a theoretical dataset, or a pattern or signal extracted from p ...
,
theoretical computer science computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the ...
,
automata theory Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science. The word ''automata'' comes from the Greek word αὐτόματο ...
, and
linguistics Linguistics is the science, scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure ...
. While many applications are new, the classical Chomsky–Schützenberger hierarchy of classes of
formal grammar In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe ...
s is perhaps the best-known result in the field.


Geometric combinatorics

Geometric combinatorics is related to
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
and
discrete geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...
. It asks, for example, how many faces of each dimension a convex polytope can have.
Metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathem ...
properties of polytopes play an important role as well, e.g. the Cauchy theorem on the rigidity of convex polytopes. Special polytopes are also considered, such as permutohedra, associahedra and
Birkhoff polytope The Birkhoff polytope ''B'n'' (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph K_) is the convex polytope in R''N'' (where ''N'' = ''n''2) who ...
s.
Combinatorial geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geo ...
is a historical name for discrete geometry. It includes a number of subareas such as polyhedral combinatorics (the study of
faces The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may affe ...
of convex polyhedra),
convex geometry In mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of num ...
(the study of
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex ...
s, in particular combinatorics of their intersections), and
discrete geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...
, which in turn has many applications to computational geometry. The study of
regular polytope In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
s, Archimedean solids, and
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
s is also a part of geometric combinatorics. Special polytopes are also considered, such as the
permutohedron In mathematics, the permutohedron of order ''n'' is an (''n'' − 1)-dimensional polytope embedded in an ''n''-dimensional space. Its vertex coordinates (labels) are the permutations of the first ''n'' natural numbers. The edges ident ...
,
associahedron In mathematics, an associahedron is an -dimensional convex polytope in which each vertex corresponds to a way of correctly inserting opening and closing parentheses in a string of letters, and the edges correspond to single application of ...
and
Birkhoff polytope The Birkhoff polytope ''B'n'' (also called the assignment polytope, the polytope of doubly stochastic matrices, or the perfect matching polytope of the complete bipartite graph K_) is the convex polytope in R''N'' (where ''N'' = ''n''2) who ...
.


Topological combinatorics

Combinatorial analogs of concepts and methods in
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
are used to study graph coloring,
fair division Fair division is the problem in game theory of dividing a set of resources among several people who have an entitlement to them so that each person receives their due share. That problem arises in various real-world settings such as division of inh ...
, partitions,
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
s, decision trees,
necklace problem The necklace problem is a problem in recreational mathematics concerning the reconstruction of Necklace (combinatorics), necklaces (cyclic arrangements of binary values) from partial information. Formulation The necklace problem involves the re ...
s and
discrete Morse theory Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, homology com ...
. It should not be confused with
combinatorial topology In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such ...
which is an older name for
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
.


Arithmetic combinatorics

Arithmetic combinatorics arose out of the interplay between
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, combinatorics, ergodic theory, and harmonic analysis. It is about combinatorial estimates associated with arithmetic operations (addition, subtraction, multiplication, and division).
Additive number theory Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigr ...
(sometimes also called additive combinatorics) refers to the special case when only the operations of addition and subtraction are involved. One important technique in arithmetic combinatorics is the ergodic theory of
dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in ...
s.


Infinitary combinatorics

Infinitary combinatorics, or combinatorial set theory, is an extension of ideas in combinatorics to infinite sets. It is a part of
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, an area of
mathematical logic Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal ...
, but uses tools and ideas from both set theory and extremal combinatorics. Some of the things studied include
continuous graph GraphOn GO-Global is a multi-user remote access application for Windows. Overview GO-Global allows multiple users to concurrently run Microsoft Windows applications installed on a Windows server or server farm  from network-connected loc ...
s and
trees In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, including only woody plants with secondary growth, plants that are u ...
, extensions of
Ramsey's theorem In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say ...
, and
Martin's axiom In the mathematical field of set theory, Martin's axiom, introduced by Donald A. Martin and Robert M. Solovay, is a statement that is independent of the usual axioms of ZFC set theory. It is implied by the continuum hypothesis, but it is consist ...
. Recent developments concern combinatorics of the continuum and combinatorics on successors of singular cardinals.
Gian-Carlo Rota Gian-Carlo Rota (April 27, 1932 – April 18, 1999) was an Italian-American mathematician and philosopher. He spent most of his career at the Massachusetts Institute of Technology, where he worked in combinatorics, functional analysis, proba ...
used the name ''continuous combinatorics'' to describe
geometric probability Problems of the following type, and their solution techniques, were first studied in the 18th century, and the general topic became known as geometric probability. * (Buffon's needle) What is the chance that a needle dropped randomly onto a floo ...
, since there are many analogies between ''counting'' and ''measure''.


Related fields


Combinatorial optimization

Combinatorial optimization Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combi ...
is the study of optimization on discrete and combinatorial objects. It started as a part of combinatorics and graph theory, but is now viewed as a branch of applied mathematics and computer science, related to
operations research Operations research ( en-GB, operational research) (U.S. Air Force Specialty Code: Operations Analysis), often shortened to the initialism OR, is a discipline that deals with the development and application of analytical methods to improve decis ...
, algorithm theory and
computational complexity theory In theoretical computer science and mathematics, computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved ...
.


Coding theory

Coding theory Coding theory is the study of the properties of codes and their respective fitness for specific applications. Codes are used for data compression, cryptography, error detection and correction, data transmission and data storage. Codes are studied ...
started as a part of design theory with early combinatorial constructions of error-correcting codes. The main idea of the subject is to design efficient and reliable methods of data transmission. It is now a large field of study, part of information theory.


Discrete and computational geometry

Discrete geometry Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic ge ...
(also called combinatorial geometry) also began as a part of combinatorics, with early results on convex polytopes and
kissing number In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement o ...
s. With the emergence of applications of discrete geometry to computational geometry, these two fields partially merged and became a separate field of study. There remain many connections with geometric and topological combinatorics, which themselves can be viewed as outgrowths of the early discrete geometry.


Combinatorics and dynamical systems

Combinatorial aspects of dynamical systems is another emerging field. Here dynamical systems can be defined on combinatorial objects. See for example
graph dynamical system In mathematics, the concept of graph dynamical systems can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of GDSs is to relate their structural properties ...
.


Combinatorics and physics

There are increasing interactions between
combinatorics and physics Combinatorial physics or physical combinatorics is the area of interaction between physics and combinatorics. Overview :"Combinatorial Physics is an emerging area which unites combinatorial and discrete mathematical techniques applied to theoretica ...
, particularly
statistical physics Statistical physics is a branch of physics that evolved from a foundation of statistical mechanics, which uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approxim ...
. Examples include an exact solution of the
Ising model The Ising model () (or Lenz-Ising model or Ising-Lenz model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics. The model consists of discrete variables that represent ...
, and a connection between the
Potts model In statistical mechanics, the Potts model, a generalization of the Ising model, is a model of interacting spins on a crystalline lattice. By studying the Potts model, one may gain insight into the behaviour of ferromagnets and certain other phenom ...
on one hand, and the chromatic and
Tutte polynomial The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph G and contai ...
s on the other hand.


See also

* Combinatorial biology *
Combinatorial chemistry Combinatorial chemistry comprises chemical synthetic methods that make it possible to prepare a large number (tens to thousands or even millions) of compounds in a single process. These compound libraries can be made as mixtures, sets of individua ...
*
Combinatorial data analysis In statistics, combinatorial data analysis (CDA) is the study of data sets where the order in which objects are arranged is important. CDA can be used either to determine how well a given combinatorial construct reflects the observed data, or to sea ...
*
Combinatorial game theory Combinatorial game theory is a branch of mathematics and theoretical computer science that typically studies sequential games with perfect information. Study has been largely confined to two-player games that have a ''position'' that the player ...
*
Combinatorial group theory In mathematics, combinatorial group theory is the theory of free groups, and the concept of a presentation of a group by generators and relations. It is much used in geometric topology, the fundamental group of a simplicial complex having in a nat ...
* Discrete mathematics * List of combinatorics topics *
Phylogenetics In biology, phylogenetics (; from Greek φυλή/ φῦλον [] "tribe, clan, race", and wikt:γενετικός, γενετικός [] "origin, source, birth") is the study of the evolutionary history and relationships among or within groups ...
* Polynomial method in combinatorics


Notes


References

* Björner, Anders; and Stanley, Richard P.; (2010)
''A Combinatorial Miscellany''
* Bóna, Miklós; (2011)
''A Walk Through Combinatorics (3rd Edition)''
* Graham, Ronald L.; Groetschel, Martin; and Lovász, László; eds. (1996); ''Handbook of Combinatorics'', Volumes 1 and 2. Amsterdam, NL, and Cambridge, MA: Elsevier (North-Holland) and MIT Press. * Lindner, Charles C.; and Rodger, Christopher A.; eds. (1997); ''Design Theory'', CRC-Press; 1st. edition (1997). . * * * Stanley, Richard P. (1997, 1999)
''Enumerative Combinatorics'', Volumes 1 and 2
Cambridge University Press Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Pre ...
. * * van Lint, Jacobus H.; and Wilson, Richard M.; (2001); ''A Course in Combinatorics'', 2nd Edition, Cambridge University Press.


External links

*
Combinatorial Analysis
– an article in
Encyclopædia Britannica Eleventh Edition The ''Encyclopædia Britannica'' Eleventh Edition (1910–1911) is a 29-volume reference work, an edition of the '' Encyclopædia Britannica''. It was developed during the encyclopaedia's transition from a British to an American publication. S ...

Combinatorics
a
MathWorld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Di ...
article with many references.
Combinatorics
from a ''MathPages.com'' portal.
The Hyperbook of Combinatorics
a collection of math articles links.
The Two Cultures of Mathematics
by W.T. Gowers, article on problem solving vs theory building.



{{Authority control